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Resume

Resume

I det konventionelle landbrug er ukrudtsbekæmpelse i dag i højsæde
med det form̊al at f̊a s̊a højt et udbytte som muligt. Undlades det at
bekæmpe ukrudt vil udbyttet fra marken falde betydeligt. Fra midten
af sidste århundrede har man bekæmpet ukrudt ved hjælp af selek-
tive sprøjtemidler, der primært skader ukrudtet og lader afgrøden st̊a
tilbage i en mark. Først i de senere år er man blevet opmærksom
p̊a de skadelige virkninger fra sprøjtemidlerne og hvordan nogle mi-
dler ophobes i fødekæden. Dette har medført et politisk ønske om at
minimere brugen af sprøjtemidler. 70% af de anvendte sprøjtemidler i
Danmark benyttes til ukrudtsbekæmpelse.

Udgangspunktet for denne afhandling er, at det er muligt at bekæmpe
ukrudt effektivt uden at belaste miljøet unødigt ved at benytte robot-
teknologi og computerbaseret genkendelse af afgrøder og ukrudt. Med
et kamera kan der tages billeder af planter i marken og ved at analysere
billederne kan det bestemmes hvilke planter, der er i billedet og hvor de
st̊ar. Vides det præcist hvor ukrudtet st̊ar kan det behandles m̊alrettet
med et sprøjtemiddel. Et s̊adant, s̊akaldt, mikrosprøjte system, som
doserer en dr̊abe Roundup p̊a ukrudtet er udviklet og afprøvet i dette
projekt. Ved at undg̊a at ramme afgrøden og jorden kan forbruget af
sprøjtemidler reduceres med mere end 95% til ukrudtsbekæmpelse og
stadig bekæmpe ukrudtet effektivt har andre vist.

Hvis afgrødens placering kendes og afgrøden st̊ar i en rækkestruktur,
er det muligt mekanisk at bekæmpe ukrudt i rækkerne. Dette prin-
cip benyttes i dag til dyrkning af salat og andre udplantede afgrøder.
Fordelen ved at arbejde med udplantede afgrøder er, at det er let for
en computer at se forskel p̊a afgrøder og ukrudt. Ønsker man at gøre
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det samme med uds̊aede afgrøder f.eks. sukkerroer, er det ikke helt s̊a
let, idet afgrøde og ukrudt har samme størrelse og der skal benyttes
mere avancerede teknikker til at skelne mellem de to typer planter. En
lovende mulighed er at s̊a roerne i et fast mønster. Ved hjælp af et
kamera kan dette mønster genfindes og planterne, der følger mønstret
m̊a være afgrøde. I denne afhandling demonstreres et s̊adant system
der automatisk kan træne en form–baseret plante–genkender ud fra det
mønster som afgrøden er s̊aet i.

I de benyttede systemer sidder der et kamera over rækken og ser ned p̊a
planterne. Det giver nogle udfordringer n̊ar forskellige planters blade
overlapper. Ved overlap ser computeren en stor grøn klump. Det
beskrives hvordan enkelt blade kan detekteres i en s̊adan klump. Ud
fra detekterede enkeltblade er det muligt at bestemme hvilke planter,
der er i klumpen og hvor de st̊ar. Ved at basere plantegenkendelse p̊a
enkeltblade kan plantegenkendelse gøres mere robust overfor overlap
mellem de forskellige planter.
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Summary

Summary

In conventional farming weed control is of paramount importance with
the aim of maximizing the yield. Neglect of weed control can lead to
significant yield losses. Since the middle of the last century weeds have
been controlled using selective herbicides, which controls the weeds and
lets the crop remain in the field. This has lead to a political request for
minimizing the pesticide usage. 70% of the used pesticides in Denmark
are used for weed control.

The basis for this dissertation is that it is possible to control weed effec-
tively without putting unnecessary load on the environment employing
robot technology and computer based recognition of crops and weeds.
Images of plant in a field can be captured with a camera. Analysis
of these images can identify the plant species and determine the plant
locations. If knowledge about the precise location of weed plants is
available application of herbicides can be targeted at the weed plants.
Such a microsprayer system, which can place a droplet of Roundup on
weed plants, has been developed and tested in this project. Other re-
searchers have shown that by avoiding deposition of herbicides on crop
and soil the use of herbicides for weed control can be reduced with more
than 95% and still control the weeds effectively.

If the position of crop plants are known and the crop is placed in a row
structure it is possible to control weeds mechanically inside the rows.
This approach is used today for growing lettuce and other transplanted
crops. The advantage of working with transplanted crops is that it is
easy for a computer to distinguish between crops and weeds. If you
want to do the same with seed crops like sugar beets, it is not as
easy, given that crops and weeds have similar sizes and more advanced
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methods are needed to discriminate between the two plant types. A
promising opportunity is to sow crops in a fixed pattern. With the use
of a camera, this pattern can be detected and the plants that follow this
pattern are likely crops. In this dissertation a system that can train a
shape based plant classifier based on the pattern that crop plants are
sown in described.

In the utilized systems a camera is placed above the crop row, which
looks down on the plants. This raises some challenges when leaves of
different plants occlude each other. When several plants occlude each
other the computer is seeing a single green blob. Methods for detecting
individual leaves in such a blob is described in the dissertation. Based
on the detected leaves it is possible to determine which plants that are
in the blob and where they are located. By basing plant recognition
on individual leaves it can be made more tolerant to occlusion between
different plants.
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Chapter 1. Introduction

Chapter 1

Introduction

Major interest in the development of weed control methods is due to
the potential of reducing the use of herbicides in modern agriculture.
Modern agriculture has developed a high requirement for weed control,
as this ensures a high yield from crop plants (Oerke, 2005)

There are several methods of weed control, that can be applied in agri-
culture. See figure 1.1. Chemical weed control is based on applying a
spray liquid to the entire field. The spray liquid contains a herbicide
which is intended to harm weeds more than crops. With the available
herbicides typical weed infestations can be controlled effectively. Some
weed species can only be controlled with a few herbicides and due to
new regulations the set of available herbicides in the European Union
will be reduced in the coming years (Weis et al., 2012). Mechanical weed
control in the form of a harrow can control weeds between crop rows
effective, but is unable to control in–row weeds without damaging the
crop plants (Weide et al., 2008). Mechanical weed control in the form
of fingerweeders assume that crop plants can tolerate more mechanical
stress than weeds in the row. For crops like sugar beets the seedlings
are very fragile (Kurstjens et al., 2000) and there exist no mechanical
weed control method suitable of handling in–row weeds at the time of
writing. A detailed description of mechanical weed control methods are
described in (Griepentrog et al., 2010) and (Rueda-Ayala et al., 2010).
Weed control based on thermal treatment of fields are used for organic
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Weed control
methods

Chemical
weed control

Selective her-
bicides

Only apply herbicide when
weed plants are present.

Systemic her-
bicides

Application of herbicide to
individual weed plants.

Mechanical
weed control

Protect crop plants from
mechanical stress.

Thermal weed
control

Protect crop plants from
exposure to heat.

Manual weed
control

No direct benefits.

Figure 1.1: Overview of weed control methods. Weed control methods
can be divided into four groups: chemical, mechanical, thermal and
manual. Chemical weed control is subdivided into selective and systemic
herbicides. For each method a description of how the method can benefit
of knowledge about plant positions and types is given in white boxes.
Organic weed control methods are marked in green. Methods based on
herbicides are marked in red.

maize. If the treatment is conducted at an early growth stage, the maize
is nearly unharmed while the weeds are controlled (Fontanelli et al.,
2011). Manual weeding where weeds are removed by hands or hoe, is
the most expensive method and it can be difficult to find employees for
this task (Åstrand et al., 2002). Organic farms are not allowed to apply
chemical methods of weed control and therefore relies on certain crop
rotations, mechanical weed control, thermal weed control and manual
weeding.

Weed control with herbicides has been the default solution in the last
few decades (Kurstjens, 2007). Pesticide residues have been found in
almost 40% of samples from the Danish underground water reservoirs
(Thorling, 2010). Such observations leads to concerns about the en-
vironmental impact of pesticides and especially how to minimize the
emission. A method of limiting the environmental impact is to reduce
the usage of pesticides. To gain significant reductions in the pesticide
usage, the usage of herbicides must be decreased significantly as 70%
of the used pesticides in Denmark are herbicides (Danish Ministry of
the Environment, 2010).
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Chapter 1. Introduction

In precision agriculture the main goal is to examine in field variations
and respond to these variations by adjusting the amount of herbicide
or fertilizer such that the crops are given the best possible growth con-
ditions. Numbers from Jørgensen et al., 2007 show that the amount
of used herbicide can be reduced with approximately 40% if the weed
population is known for the field. This reduction can be reached by
using a herbicide mixture adjusted to the weed population in the field.
If the weed population is known on a smaller length scale the reduction
potential is even larger (Lund et al., 2008). At the plant scale level re-
ductions higher than 95% is within reach using microspraying (Graglia,
2004). To realize these reductions detailed information about weed in-
festations is required.

Information about the location of individual crop and weed plants can
be utilized in some new weed control methods. How different weed con-
trol methods can benefit from this information is presented in figure
1.1. Chemical weed control can benefit from computer vision systems
in two ways depending on the used type of herbicide. Selective her-
bicides are effective at controlling growth of certain plant species but
has a limited effect on other species. Systemic herbicides target central
parts of the metabolism of all plants and will harm all plant species
significantly. When using a selective herbicide a computer vision sy-
stem can trigger the spray system when weeds are nearby and thus
reduce the herbicide usage. This works on larger areas (Sökefeld et al.,
2012 mentions patches with an area of 81 m2) as the crop plants can
tolerate the selective herbicide (Christensen et al., 2009). It is much
more difficult to develop a full scale sprayer system that uses systemic
herbicides, as the system must target individual weed plants or at least
ensure that none of the crop plants are exposed to the herbicide. Me-
chanical weeding systems can use knowledge about the precise location
of crop plants to protect them from mechanical stress. Thermal weed
control systems can use a similar approach (Poulsen, 2005).

These methods can only be put to effect with access to detailed infor-
mation about location of crop and weed plants. On the patch scale
level this information can be generated by manual sampling at sev-
eral locations in the field, but this is not economic feasible. Systems
based on machine vision for weed monitoring are under development.
Acquisition of high resolution images for weed recognition is already
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1.1. Scope and strategy

functional but one of the current limitations is the lack of methods for
processing and analyzing the acquired information (Christensen et al.,
2009).

1.1 Scope and strategy

This dissertation presents methods on how to process and analyse im-
ages from machine vision systems for quantification of weed infestations
on different length scales. Methods for dealing with the following tasks
are described:

• Detection of vegetation based on multispectral images.

• Estimation of the average weed pressure in images of maize seedlings
where weeds and crops can occlude each other.

• Detection of the plant stem emerging point in sugar beet seedlings
at the sub–centimeter scale.

• Microsprayer control for targeting of individual weeds based on
position and current velocity.

• Localized training of a shape based classifier using context fea-
tures.

The main objective in this project was to gain knowledge about machine
vision systems in the context of agriculture and enable extraction of
relevant information, like plant species and position, from images.

Six strategies were used to acquire information about the position and
type of plants. The strategies were: 1) shape based recognition of
plants, 2) estimation of plant centre position using individual leaves, 3)
leaf shape based recognition of plants, 4) analysis of neighbour edges for
locating dicot weeds, 5) crop recognition based on positions of neigh-
bour plants and 6) use of context features to train a localized shape
based classifier. An overview is given in figure 1.2 on the next page.
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Chapter 1. Introduction

Images of plants

Shape based
classification

Massive occlu-
sions

Assume no oc-
clusions, only
relevant under
lab conditions.

Leaf extraction
for plant centre
estimation

Ready for field
tests.

Leaf extraction
for plant recogni-
tion

Further investi-
gations are re-
quired.

Modicovi
Field tests sum-
mer 2012.

Classification
based on context
features

Cannot handle
high weed pres-
sure.

Adaptive shape
based classifier

Acquisition of
suitable training
set.

Information
about the place-
ment and type of
plants.

Figure 1.2: Approaches to acquire information about the placement
and type of plants from images of fields. Each approach is marked
in green. Red marks an unsuccessful approach and purple marks a
successful approach.

1.2 Reading guide

The methods described in this thesis can be applied for different weed
control methods. How information can flow from one method to an-
other is shown in figure 1.3 on page 8. The figure can be perceived as
a graphical table of contents.

The general introduction contains the following main sections: Chapter
2 describes existing technologies that relates to machine vision under
field conditions and advanced methods for weed control that either rely
on or could benefit from input from computer vision systems. The task
of locating vegetation in an image is described in chapter 3, the remain-
ing part of this thesis derives from this processing stage. In chapter 4
a method for estimating the weed pressure in maize fields is described.
The system handles occluded scenes where crop and weed plants are
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1.2. Reading guide

Extraction of
individual leaves.
Chapter 5 Plant centre esti-

mation.
Section 5.1.5

Control of me-
chanical in–row
weeding device

Leaf based plant
recognition.
Section 5.2.3

Weed pressure
estimation.
Chapter 4

Control of
sprayer boom

Segmentation.
Chapter 3

Shape based
classification.
Chapter 6

Activation of
microsprayer.

Localized shape
based classifica-
tion.
Chapter 7

I

II

III

IV

V

Figure 1.3: Visualization of information flows for machine vision sys-
tems involving parts of this thesis. The shaded regions refer to specific
parts of the thesis and the circles represents the publications that are
in the appendix. The white boxes are examples of actions that can be
controlled using the described methods.
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partly overlapping. Chapter 5 describes two methods for locating indi-
vidual leaves in images of sugar beet seedlings. Detection of individual
leaves can be used to recognize plants in occluded scenes and precise lo-
cation of the plant stem. A microsprayer system is described in chapter
6. The system distinguishes between crop and weed plants by compar-
ing the observed plant with a set of examples with known classes. The
system was tested under different conditions and the results are pre-
sented here. Chapter 7 describes how shape based classifiers can use
information about the row structure to train themselves such they can
adapt to in field variations of the shape.

1.3 Summary of papers

Paper I introduces a robust method for colour based segmentation of
multispectral images into regions containing vegetation and soil respec-
tively. Training of the classifier consists of presenting it for a set of
annotated images where some regions are marked as vegetation or soil.
The pixel values found in the input image is transformed into a set
of colour indices which is more suitable for the classifier. The classi-
fier learns the probability density for all combinations of colour indices
and segmentation classes. Based on these probability densities new ob-
servations can be recognized as either vegetation or soil using Bayes
rule.

Paper II introduces a novel machine vision method that can estimate
the amount of dicots (weeds) in a Maize field. Maize leaves are charac-
terized by long straight edges while dicot leaves are more round. The
method searches for these characteristics by pairing nearby edges and
examine how they are positioned and oriented relative to each other.
The distribution of these relative coordinates and orientations is a kind
of fingerprint of the vegetation present in the image. The fingerprint
is invariant to rotation of the input image and is only weakly affected
by overlapping leaves in the image. The ratio of dicot leaf area to total
area of vegetation can be approximated from this fingerprint.

Paper III presents a method for detecting individual leaves on sugar
beet seedlings. The location and orientation of the detected leaves is
then used to estimate the location of the plant stem emerging point.

9
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Mechanical weeding devices must protect this point, as the crop would
otherwise be harmed. If the position of this point is known with high
accuracy, mechanical weeding devices can get closer to the crop plant
without the risk of harming it. The error in the estimated plant stem
emerging points were on average 3mm, which is an order of magnitude
better than what can be delivered by seed tracking RTK–GPS systems.

Paper IV describes a machine vision controlled microsprayer setup and
how it was tested. Three different plant species were placed in 1L
pots. The pots were moved at a steady pace of 0.5 m/s below the
microsprayer setup. The vision system could recognize the weed plants
and treat them with the herbicide glyphosate. Two weeks after the
experiment the growth stage of the plants were determined visually.
Oilseed rape were used as a weed model and 94% of these plants were
significantly limited in their growth.

Paper V discuss the advantage of using context based features for rec-
ognizing crop plants. The benefit of using context based features de-
pends directly on the weed pressure and the position uncertainty of the
crop plant pattern. These two values can be combined to a normalized
weed pressure λ. If the true seeding points are known, the normalized
weed pressure puts an upper bound on the achievable crop recognition
rate given by 1

1+λ . The implemented context based crop recognition
methods were evaluated in a simulated environment. In the simulation
environment the methods were tested under different weed densities
and crop position uncertainties. The two best performing methods fol-
lowed a curve similar to the predicted upper bound, with the curve
shifted in direction of a lower normalized weed pressure.

10
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Chapter 2

Existing technologies

The term precision agriculture have been used for a long time to de-
scribe a set of methods that allow the farmer to monitor in–field varia-
tions and act upon them. Prior and ongoing research projects provide
access to methods for locating weed and crop plants and also selective
target weed plants or protect crop plants. This chapter is divided in
three sections. Section 2.1 describes general methods that can give in-
formation about the location of crop plants and the presence of weeds.
Section 2.2 describes camera technologies which are used for image ac-
quisition. Section 2.3 describe seven systems based on GPS located
plants and vision based plant recognition. The systems are either re-
search platforms or available commercially.

2.1 Crop and weed detection methods

If the position of crop and weed plants are known, it is possible to
protect crop plants from weed control or direct weed control against the
weeds. Reliable information about crop and weed plant positions will
allow development of new types of methods for selective weed control.
In this section two examples are provided.

11



2.1. Crop and weed detection methods

2.1.1 Mapping location of seeds and transplanted
plants

With RTK GPS systems it is possible to map specific locations with a
few centimetres in accuracy, this can be used to mark the location of all
seeds sown in a field or all transplanted crop plants. Several research
groups have reported results on the accuracy of such systems. Ehsani
et al., 2004 measured seed locations with a modified seeder and found
distances between actual plant locations and measure seed locations in
the range 30 mm – 38 mm. Sun et al., 2010 mapped transplanted plants
and found that the position uncertainty in the movement direction
is significantly higher than in the transversal direction, the average
position error were (20± 31) mm.

Nørremark et al., 2007 used optical detection of sowing locations of
sugar beets. They found that 95% of the plants appeared within
37.3 mm from the measured seed location. Figure 2.1 visualizes the
true plant locations and the mapped seed locations. Furthermore the
sources for this variation were investigated. Taking care of GPS drift
over time (ρGPS = 9.5 mm) and measured deviations between seed lo-
cation and plant location (ρseed–plant = 12.4 mm) a minimal RMS error

along both axes of 15.6 mm =
√
ρ2GPS + ρ2seed–plant should be expected.

The main flaw of methods that rely on knowing the location of crop
plants at one point in time, is that external forces might move the
plant in the time between transplanting or seeding and weed control.
A tractor wheel can push soil aside and thus move a few plants out
of the protected area. On a larger scale an earthquake could move
the entire field in the few weeks between seeding and when the seed
locations is used for weed control. A more likely scenario is data loss
due to corrupted files, failing hard drives.

2.1.2 Vision based detection and classification

Visual detection of crop plants is an alternative to storing all crop plant
positions. Given an input image, the method locates vegetation objects
and based on the shape of these objects recognizes them as either crop
or weeds. The advantages of vision based detection and classification

12
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Figure 2.1: Visual representation of precision using RTK GPS for
tracking seed locations. Seed locations are marked by circles (◦) with
a radius of 25 mm and visual location of plant centres are marked with
dots (•). From Nørremark et al., 2007.

of plants are a low uncertainty in plant position and that information
about the weed infestation can be extracted from the images. A se-
vere problem is to handle occlusion between multiple plants and many
systems for plant recognition ignores this problem, which can lead to
inferior classification results.

Guyer et al. (1986) presented the central idea used for much work within
the field of plant recognition. Given an input image, the method lo-
cates vegetation objects and describes the shape of each object with
features like area, length of perimeter, moment of inertia and elonga-
tion. Feature descriptors based on the convex hull and the skeleton of
the plant shape were introduced by Hemming et al. (2001) and Weis
et al. (2009). One method for dealing with the occlusion problem is to
model the average shape and typical shape variations of a set of known
plants. Active shape models, which are able to model these shape vari-
ations, were used for plant recognition by Søgaard (2005) and Persson
et al. (2008). They both found that active shape models could locate
and recognize occluded plants, but it required a good initial guess on
the plant location and orientation.

13



2.2. Camera technologies

The first generation of camera based weed monitoring systems were
offline systems, meaning that the system acquired images in the field
and analysed them at home. This was required as the processing power
for analysing the images while driving were not available (Sökefeld et
al., 2012). After the analysis proper actions can be taken leading to
two passes across the field. The second pass would increase the cost
of treatment significantly compared to a single pass solution where the
images are analysed and action is taken instantaneous (Oebel et al.,
2009).

2.2 Camera technologies

In the literature there is a large variety of technologies for captur-
ing images of plants. In this section different camera technologies are
described. The delivery of most of these systems is a map of where
vegetation has been observed. This map is then used to analyse the
shape of detected plants.

The subsections about spectral properties and camera types describes
methods that are used by the systems described in section 2.3. Chloro-
phyll fluorescence and multiple camera setups are interesting techniques
that can be used to deal with the occlusion problem and maybe derive
new features for plant recognition. No references to demonstration sys-
tems using these methods were found.

2.2.1 Spectral properties of soil and vegetation

How objects appear in a vision system depends on their spectral prop-
erties. The reflection spectra of soil and three different plant species
are shown in figure 2.2. The reflection intensity of soil increases slowly
with the wavelength whereas the reflection of vegetation varies much
faster. The bump near 540 nm derives from chlorophyll which is used
in photosynthesis (Loomis, 1965). The steep increase in reflectivity in
the range [700 nm; 750 nm] is denoted the red edge inflection point, at
wavelengths above 750nm the vegetation will try to reflect as much of
the light as possible to reduce heating, below this threshold the light is
used in photosynthesis which is maximized by the vegetation (Atwell
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et al., 1999; Scotford et al., 2005).

Figure 2.2: Typical spectra from vegetation and soil. The large
difference in reflection between soil and vegetation in the range
[700 nm; 800 nm] is used to detect vegetation with the Normalized Dif-
ference Vegetation Index. From Weis et al., 2010.

Spectral information from the visible region can be acquired with RGB
cameras and used for detecting vegetation (Bossu et al., 2009). Such a
system measures the amount of reflected light near three wavelengths
corresponding to red (R), green (G) and blue (B). Each measurement
is then quantized to an integer, often in the range [0, 255]. Detection
of vegetation relies often on thresholding of different colour indices,
including the Excess Green (ExG) (Woebbecke et al., 1995; Meyer et
al., 2008). ExG is defined as:

ExG = 2G−R−B (2.1)

It is not always possible to detect all vegetation with the ExG colour
index, as an example see the image in figure 2.3 where parts of the
vegetation has a brown shading similar to the soil. The maize leaf
in the image have yellow areas while the pineapple–weed plants have
brown perimeters. Such variations makes it difficult to recognize areas
with vegetation using ExG.

A more stable indicator of the presence of vegetation can be found by
looking at figure 2.2 and note the large variation between reflectivi-
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2.2. Camera technologies

Figure 2.3: Ilustration of how it is not always possible to detect all veg-
etation with the ExG colour index. The original image is shown to the
left and a manual segmented is shown to the right. The image contains
Maize (Zea mays L., shown in green) and pineapple-weed (Chamomilla
suaveolens, shown in red). Picture taken at Flakkebjerg in 2010.

ties of soil and vegetation for wavelengths in the near infrared (NIR)
range [750 nm; 950 nm]. If both near infrared and red intensities are
measured, the normalized difference vegetation index (NDVI) is an ef-
fective way of locating vegetation (Rouse et al., 1973).

NDVI =
N −R
N +R

(2.2)

2.2.2 Matrix and line scan cameras

Matrix cameras are used to capture information about a larger area.
The acquired image consists of a 2D array with pixel values. Each pixel
can have a few values attached, such as intensity of red, green, blue or
near infrared radiation. The line scanning camera takes images of a
narrow region, usually with a 1 ×m pixel array, and the camera type
is often used for hyperspectral image acquisitions (Zhang et al., 2011).
The use of line scanning cameras in real time weed control systems
requires the camera to capture frames at a very high rate, but the
advantage is that the amount of information from each exposure is
limited and only a small area needs to be illuminated.
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2.2.3 Chlorophyll fluorescence

An other method of characterising the radiation emitted from vegeta-
tion is to examine the fluorescent properties of chlorophyll. Tyystjärvi
et al. (2011) examined the intensity of fluorescence over time after ex-
posing plants to strong pulses of light. Before the measurements where
the plants shielded from illumination for 1 second. Analysis of the
variation in fluorescent intensity over time were used to classify vegeta-
tion into crop and weed classes with a correct classification rate in the
range 86.7–96.1%. The time where plants need to be in shadow will
put certain constraints on machinery utilizing this method.

2.2.4 Single or multiple camera setups

Some of the issues related to analysing images from a single camera
can be reduced by getting some kind of depth information. To deter-
mine which pixels belong to a certain plant, when the image contains
overlapping leaves, is one example. Jin et al. (2009) uses a real time
stereo setup to extract individual corn plants under conditions where
leaves from several plants overlap. The disadvantages of using stereo
rigs are increased cost of the image acquisition system and a much
larger requirement for data processing power.
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2.3 Demonstration and commercial systems

Several demonstration systems exist and a few commercial systems
which can control in–row weeds are available. A lot of the mentioned
systems have inspired the work in this dissertation. A short overview
of the systems, used plant detection methods and weed control sys-
tems are given in table 2.1. Two of the systems, the Robocrop and
the Robovator, are used commercially for mechanical weed control in
transplanted crops like lettuce and cabbage. As a part of the Brainweed
project, images acquired by the Robovator were used for evaluation of
different image analysis methods.

2.3.1 H sensor

The H sensor is a vision based plant recognition system that recognizes
plants based on their shape. A central assumption is that plants to
not occlude each other. The camera is a bispectral matrix camera that
operates in the red and near infrared spectral regions. The acquired
images are analysed by locating individual plants and extracting their
shape descriptors Piotraschke, 2010. The sensor has been used for simu-
lated online weed control in fields with winter wheat and maize Sökefeld
et al., 2012.

2.3.2 Volunteer potatoes

Sugar beet farmers in the Netherlands have to remove volunteer potato
plants from their fields. Volunteer potatoes can be a spreading vector
for the potato disease late blight (Phytophthora infestans). No selective
herbicides are available which targets potatoes while avoid harming
sugar beets, so there is a need for alternative solutions, because manual
weeding is too costly (Nieuwenhuizen et al., 2007).

Nieuwenhuizen (2009) developed a system using machine vision that
can apply glyphosate to volunteer potatoes and avoid hitting the sugar
beets. An image of the system is shown in figure 2.5 and an illustration
of the image analysis is shown in figure 2.6. The colour information
from RGB images is first used to locate vegetation using the excess
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2.3. Demonstration and commercial systems

Figure 2.4: Image of the H–sensor. An active illumination system
based on LEDs are placed around the bispectral camera. From Pio-
traschke (2010).

green colour index, then is the colour information used to distinguish
between between crop and weed plants. The system adapts to vari-
ations in plant appearance by recognizing the row location, applying
the rule that plants close to the crop row most likely will be crops
and plants far away from the row will probably be volunteer potatoes.
These examples of likely crop and weed plants is then used to train a
Bayesian classifier (Nieuwenhuizen et al., 2010a). Performance of this
volunteer potato control system was evaluated, 77% of the volunteer
potatoes were successfully controlled while 1% of the sugar beets were
killed (Nieuwenhuizen et al., 2010b).
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Figure 2.5: Volunteer potato control machinery image and sketch.
Under the blue hood cameras (RGB and NIR), illumination (Xe) and
ultrasonic sensors (US) are mounted. Microsprayer (MS), computer
equipment and wheel encoder (WE) are placed behind the cover. From
Nieuwenhuizen et al., 2010b.

Figure 2.6: Location of volunteer potatoes in three sugar beet rows.
1) colour image is recorded; 2, 3, 4) vegetation and crop rows are de-
tected, colour features extracted, and classifier is trained; 5) vegetation
is classified; 6) small plants are filtered; 7) spraying decisions are made
within crop row. Image and caption is modified from Nieuwenhuizen
et al., 2010b.
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2.3. Demonstration and commercial systems

2.3.3 GeoSeed

In 2011 presented Kverneland the GeoSeed seeder. The machine places
seeds at specified GPS coordinates (Kverneland, 2011). With the sy-
stem it is possible to place crops in well defined 2D patterns, as shown
in figure 2.7. When plants are placed in a rectangular grid it is possible
to use cross hoeing for mechanical weed control (Rothmund, 2007).

Figure 2.7: Seeding pattern generated with Geoseed. The rectangular
crop placing allows the use of cross hoeing, a technique that can remove
part of the in–row weeds. From pressebureauet.dk.

2.3.4 Cycloid hoe

The cycloid hoe is a mechanical weeding device developed by Griepen-
trog et al., 2006. It consists of eight fingers mounted on a horizontal
platform which rotates around the vertical axis. Each finger on the plat-
form can be moved in the radial direction independently of the other
fingers. An example of a movement pattern is shown in figure 2.8. Un-
der normal operation are the fingers spread out such that they cover
a large area, including the row in which weeds should be controlled.
When a crop plant should be protected, the fingers, that otherwise
would harm the crop, are moved out of the crop row.
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Figure 2.8: Cycloid hoe tine trajectories. Tines are allowed to move
into the row when no crop plants would interfere with the tine trajectory.
From Griepentrog et al., 2006.

2.3.5 Mechanical weed control based on GPS loca-
tions

Perez-Ruiz et al., 2012 describes a mechanical weed control system.
The system works in transplanted tomatoes, where the position of each
crop plan is known from the transplantation process. Two knives are
moved through the soil in the row, when a crop plant gets the knives
they are moved out of the row. This process is visualized in figure 2.9.

Figure 2.9: Principle of intra row weeding. Weeds in area A can
be controlled by traditional hoeing. Area B can be targeted by in–row
hoeing, but mechanical weeding in area C (close to crop region) would
harm the crop plant. From Perez-Ruiz et al., 2012.
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2.3.6 The Mech Weed project

A mechanized weeding robot for controlling weeds in sugar beets was
described in Åstrand et al. (2002). A sketch of the system is shown in
figure 2.10. The robot can drive along crop rows autonomously and
distinguishes between crop and weeds using information about plant
positions. The software could protect crop plants from the mechanical
tool, but the weed control effect was not sufficient for use in agricul-
ture (Åstrand et al., 2002). The robot was equipped with a mechanical
weeding tool described as

The mechanical weeding tool is a rotating wheel that is ro-
tated perpendicular to the row line. The tool processes only
the area between crops in the seedline. If a crop appears,
the tool is quickly lifted by a pneumatic cylinder and low-
ered directly after the crop has been passed. Åstrand et al.,
2002

Field tests showed that 198 of 200 crops and 125 of 236 weeds survived
a mechanical weed control treatment with the system (Åstrand et al.,
2004).

Figure 2.10: Principle sketch of the MechWeed project. The colour
camera recognizes crop plants and controls the weeding tool such that
crop plants are not harmed. From www2.hh.se.
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2.3.7 Robocrop

The British company Garford Farm Machinery Ltd produces the Robo-
crop mechanical intrarow weeder (Garford, 2011). The robocrop is used
commercially for weed control in transplanted crops like lettuce and
cabbage. A half moon shaped plate is moved through the soil in the
row. When a crop plant gets close, the weeding device is rotated such
that the incision is moved with the crop plant and the plant is thus
protected from the weeding, this process is shown in figure 2.11.

Figure 2.11: The Robocrop mechanical weeding device. The incision
in the weeding device is moved such that the crop plant is protected.
From Garford, 2011.

An image of the weeding device is shown in figure 2.12. Crop detection
and localization is based on a colour camera. The image analysis soft-
ware looks for large green regions utilizing a two dimensional Mexican
hat wavelet (Tillett et al., 2008).

2.3.8 Robovator

The Robovator is a precision weeding platform for in–row weed con-
trol. A bispectral line scanning camera is mounted over each crop row.
Vegetation is detected using NDVI. Detected plants are classified as
either crop or weed based on the size and shape. The platform can
be equipped with either a mechanical or a thermal weeding device.
The mechanical weeding device consists of two knives that are dragged
through the soil inside the row. When a crop plant is detected, the
knives are removed from the row. An image of the Robovator using
the mechanical weeding device is shown in figure 2.13. The thermal
weeding device is a linear array of gas burners mounted along the crop
row. Burners are enabled during normal operation. When a crop plant
moves along the row of gas burners, the burners are turned off while the
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Figure 2.12: Robocrop in action. A camera locates crop plants and
controls the weeding device such that crop plants are protected from
mechanical in–row weeding. From Garford (2011).

Figure 2.13: The Robovator in action. Halogen lamps were used to
provide controlled illumination for the vision system. From visionweed-
ing.com.
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crop passes by. The Robovator is used commercially in transplanted
crops like lettuce, cabbage and chives.

2.4 Summary of existing technologies

There is a massive development in the field of precision agriculture and
weed control on the individual plant level. The volunteer potato control
device can apply glyphosate to individual potato plants. Systems for
mechanical control of weeds in the in–row area of transplanted crops are
available from Garford and F. Poulsen Engineering. At this moment
the limiting factor is the vision based recognition of crop plants. The
commercial systems all rely on the assumption that crop plants are
larger than weeds, which is the case in transplanted crops. This thesis
investigates methods that does not depend on this assumption and are
suitable for recognition of seeded crops in occluded areas.
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Chapter 3

Segmentation

In computer vision, segmentation is the process of partitioning digital
images into regions containing certain elements. The goal of segmen-
tation is to simplify the image into something that is easy to analyse.
All techniques described in this dissertation use image segmentation to
locate vegetation regions and boundaries in images.

Segmentation into vegetation and soil regions is usually performed by
thresholding of either the excess green colour index or the normalized
difference vegetation index in real time applications due to their sim-
plicity and low requirement for computations (Nieuwenhuizen et al.,
2010b; Langner et al., 2006).

In this chapter a method that can locate vegetation in multispectral im-
ages is described, the method is also described in paper I. The method
is based on the framework of Bayesian classifiers and is trained by an
example image where a few regions of soil and vegetation are marked as
examples of these classes. From this input, the system learns the dis-
tribution of colour values in the two classes. This knowledge can then
be used to estimate which class a new observation belongs to. With
this method, and a suitable training set, it is possible to get better seg-
mentations than thresholding of either excess green or the normalized
difference vegetation index.
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3.1 Materials and methods

The statistical framework behind the classifier is presented in section
3.1.1. Kernel density estimation is used to estimate the colour distribu-
tions in the soil and vegetation class, this is described in section 3.1.2.
Section 3.1.3 lists some colour features which can be derived from im-
ages. Training of the classifier consists of presenting it for some pixels
in soil and vegetation regions, how these training samples are marked
is described in section 3.1.4.

3.1.1 Naive Bayes classifier

The purpose of a classifier is to predict which class, C, a new obser-
vation, ~F belongs to. The classifier is trained by showing it a set of
observations and associated class labels.

A Naive Bayes classifier is a simple classifier based on applying Bayes’
theorem using a strong assumption about independent input variables
and the classifier belongs to the group of Bayesian classifiers (Pérez
et al., 2009). This group of classifiers model the joint probability dis-

tribution, P (C, ~F ), of the discrete class variable C and the continuous

input variables ~F . Based on the joint probability function, the classi-
fier calculates the probability that a new observation belongs to class
V and not class S as follows:

P (V|~F ) =
P (V, ~F )

P (V, ~F ) + P (S, ~F )
(3.1)

Training of the Naive Bayes classifier consists of approximating the joint
probability function. P (C, ~F ) is a function of several variables and to
approximate it would require a number of training samples that scales
exponentially in the number of variables. This is a prohibitive large
number of samples even with a small set of variables. An alternative
representation of the joint probability distribution is to express it in
terms of conditional probabilities as below

P (C, ~F ) = P (C) · P (F1|C) · P (F2|F1,C) · P (F3|F1, F2,C) · . . .
(3.2)
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This still requires memory exponential in the number of features which
is infeasible for more than a few features. By making the naive assump-
tion that different input features are independent, the representation
can be changed to the following product of the prior probability of the
class and the conditional probabilities for each of the input variables
given that class.

P (C, ~F ) ' P (C) · P (F1|C) · P (F2|C) · P (F3|C) · . . . (3.3)

Now P (C, ~F ) can be approximated with a much smaller training set.
Even if the assumption about independent input features is seldom
valid, the Naive Bayes classifier seems often to perform surprisingly
well (Hand et al., 2001). The advantage of the Naive Bayes classifier is
that it only requires a small amount of data to be trained.

3.1.2 Estimation of conditional probability densi-
ties

The conditional probability density for each input variable is estimated
using Kernel density estimation (Silverman, 1986; John et al., 1995).

The estimated probability density f̂h(x) can then be expressed as:

f̂h(x) =
1

L · h
L∑

i=1

K

(
x− xi
h

)
(3.4)

K(x) =
1√
2π
e

−x2

2 (3.5)

where L is the number of training samples and h is the bandwidth of
the Gaussian kernel. The bandwidth is chosen manually for each input
variable.

3.1.3 Colour features

The set of colour features used for segmentation is described in paper
I and consists of

• Four raw colour values (R, G, B, N).
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• Four colour chromaticities (r, g, b, n).

• The excess green colour index (ExG).

• The normalized difference vegetation index (NDVI).

Both RGB and RGBN images (Images with red, green, blue and near
infrared colour values) can be used. If the near infrared colour value
is not present in the image, the value is fixed to zero, and the normal
classification process can continue.

3.1.4 Defining the training set

Before the Naive Bayes classifier can segment images, it needs to be
trained. Training of the classifier consists of presenting two image to
it; a reference image and a masking image. The reference image is
a raw image as acquired by the camera system. The masking image
contains information about which regions in the reference image that
are vegetation or soil, regions with vegetation is marked by white while
soil is marked by black, see examples in figure 3.1. The masking image
is generated manually and can either be sparse or complete. In a sparse
masking image some regions are marked as vegetation, other regions
marked as soil, and the remaining part of the image is ignored in the
training process. In a complete masking image all pixels are marked as
either vegetation or soil.

Training of the classifier consisted of locating a training image, creating
a masking image by duplicating the training image and marking a few
regions in the masking image as either vegetation, marked by white, or
soil, marked by black. These two images were then used for training the
classifier. After training, the classifier was applied to the training image
and the segmentation result was inspected. If regions were misclassified,
the masking image was updated to contain more examples from these
regions and the process was repeated until the segmentation of the
training image was satisfactory.
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No nir channel in image.

Figure 3.1: Examples of the segmentation process. The first row con-
tains the raw input image. The second row contains the nir channel
of the input image. The third row are annotated images that mark ex-
ample regions of soil and vegetation. The fourth row are the produced
segmentation.
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3.2 Results and discussions

This section describes how a Naive Bayes classifier is trained and tested.
The training is described and the result of the training, the estimated
probability distributions are investigated. Classification using the indi-
vidual features and the full set of features are discussed and compared.
Experiences from working with the system on different datasets are
presented.

3.2.1 Training of the classifier

The Naive Bayes classifier was trained twice using the same reference
image and with two different masking images, a sparse and a complete.
The reduced training set consisted of 14.396 samples of vegetation and
35.763 samples of soil. For the complete masking image the sample
sizes were 294.714 and 3.460.246 for vegetation and soil respectively.
For estimating the probability densities, the bandwidths listed in table
3.1 were used. The bandwidths were chosen such that the estimated
probability densities appeared smooth for the full training set. Figure
3.2 and 3.3 show the estimated probability densities and the overlapping
coefficient for each of the features. The probability densities for the
reduced training set is not as smooth as the probability densities for the
full training set, this is caused by the difference in number of training
samples, a high number of training samples results in a more smooth
distribution. The overlap coefficients for n, ExG and NDVI in the
reduced training set is significantly smaller than in the full training
set. The larger overlap in the full training set might be caused by
faulty annotation of pixels near the boundary between vegetation and
soil regions.

Feature R G B N r g b n ExG NDVI
Bandwidth 150 150 150 100 0.01 0.005 0.005 0.005 100 0.005

Table 3.1: Bandwidths used for density estimation. The bandwidths
were chosen such that the estimated conditional probabilities shown in
figure 3.2 appeared smooth.
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26.7%
R

17.4%
G

27.3%
B

13.9%
N

16.1%

r

80.5%

g

14.3%
b

14.2%

n

6.1%
ExG

12.3%
NDVI

Figure 3.2: Conditional probabilities for the full training set. Feature
distribution for the soil class is shown in red while the distributions for
the vegetation class is shown in green. The distributions are normalized
to zero mean and equal standard deviation.
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23.4%
R

25.6%
G

22.5%
B

13.6%
N

5.5%

r

78.3%

g

9.6%
b

2.2%

n

0.2%
ExG

2.1%
NDVI

Figure 3.3: Conditional probabilities for the reduced training set. For
symbol definitions see figure 3.2.
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3.2.2 Partial classifications

Classification results based on individual features are shown in figure
3.4 and 3.5. The classifications in figure 3.4 is based on the full training
set while the reduced training set is used to generate figure 3.5. In both
figures the segmentations based on either the R, G, B or g features are
not very good, all segmentations based on these features misclassify a
large fraction of the pixels. This was expected due to the large overlaps
of the probability distributions in figure 3.2 and 3.3. The remaining
features (N, r, b, n, ExG and NDVI) all results in decent segmentations,
although the boundary between soil and vegetation regions are much
sharper when the reduced training set is used.

3.2.3 Segmentation of different image types

An informal testing of the segmentation have been conducted by using
the system for locating vegetation in several image collections. With a
new set of images that the classifier should segment, the training process
took only a few minutes, which were spent on two tasks: 1) marking
regions in the masking image and 2) testing the classifier trained using
the masking image.

In the examined image sets it were possible to achieve satisfying seg-
mentations. High levels of salt and pepper noise were often seen in
segmentations based on images stored in lossy formats like JPEG, an
example is shown in the left column in figure 3.1 and in figure 3.6. In
segmentations based on uncompressed images this was not observed,
see right column in figure 3.1.

3.3 Summary of segmentation with naive
Bayes

A system for segmenting multispectral images into soil and vegetation
regions has been developed. The system is based on the naive Bayes
classifier but modified to handle continuous input values. It was found
that training the system on a relatively small training set lead to better
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A: ref B: R C: G

D: B E: NIR F: r

G: g H: b I: nir

J: ExG K: NDVI L: P (V)

Figure 3.4: Partial classifications for the full training set. The origi-
nal RGB image is shown in tile A.
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A: ref B: R C: G

D: B E: NIR F: r

G: g H: b I: nir

J: ExG K: NDVI L: P (V)

Figure 3.5: Partial classifications for the reduced training set. The
original NIR image is shown in tile A.
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3.3. Summary of segmentation with naive Bayes

Figure 3.6: An example of the classifier in action. The input image
was stored with a lossy encoding, compression artefacts in the image
can cause some salt and pepper noise in the segmented image.

segmentations than using a full training set. The inclusion of borderline
pixels1 in the training set seemed to confuse the classifier.

The system was tested on different image types and under different illu-
mination conditions. By training of the classifier, fast and satisfactory
segmentations were achieved. Images stored in a lossy format contained
compression artefacts which were seen as salt and pepper noise in the
segmentation results.

1pixels not clearly belonging to either class
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Chapter 4

Estimation of weed
pressure in maize

A lot of the described systems for weed recognition relies on the as-
sumption that plants do not occlude each other. This assumption is
often violated in crops like maize, barley and winter wheat. This group
of crops share the property that their leaves are elongated with almost
parallel edges. Weeds present in these fields are often dicots which
tend to have a more curved structure. In this chapter a method for
estimating the dicot weed pressure in a monocot crop population is
described.

The method is based on the position and orientation of edges relative to
nearby edges. Relations between nearby edges are described using two
Cartesian coordinates and an orientation. These relations are described
as points in a five dimensional space and the density of points in this
space is estimated near some interest points. The estimated densities
are then used to predict the weed pixel percentage. The weed pixel
percentage is the percentage of vegetation pixels in the image that
originate from weed plants.

The algorithm will be referred to as Modicovi which is an abbreviation
of MOnocot and DIcot Coverage ratio VIsion. Modicovi is covered by
the patent application P1174DK00 with the title Spray boom for selec-
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Segmented image

Extract edges, section 4.1.1.

Edge point locations

Calculate gaussian features, section 4.1.4.

Gaussian features

Estimate weed pressure, section 4.1.5.

Weed pixel percentage

Figure 4.1: Dataflow in the Modocovi algorithm.

tively spraying a herbicidal composition onto dicots, which is attached
as paper II.

4.1 Materials and methods

Modivoci is based on the general steps shown in figure 4.1. First is
the location of edges and their orientation in the image determined,
this is described in section 4.1.1. All pairs of nearby edges are then
examined. The position and orientation of one element in a pair of
edges is expressed relatively to the other element in the pair, see section
4.1.2. The distribution of relative coordinates of nearby edges is a
kind of rotation invariant fingerprint of the vegetation population in
the image. 2D projections of this fingerprint are described in section
4.1.3. This fingerprint is described in terms of a small set of features,
calculation of these features are covered in section 4.1.4.

4.1.1 Detection of edges

To create edges with a single pixel width, the following procedure is
used: 1) calculation of edge strength, 2) thresholding the edge strength
image and 3) morphological thinning of the detected edge structures.
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(a) (b) (c) (d)

Figure 4.2: Steps in the Modicovi algorithm: a) Input image, b) edge
strength and orientation, c) thresholded edge image and d) thinned edge
image.

The process is shown in figure 4.2.

The edge strength is calculated by a convolution of the input image
with the first order symmetry derivative kernel Γ{p,σ

2} as defined in
Bigun et al. (2004).

Γ{p,σ
2} = (Dx + iDy)p

1

2πσ2
exp

(−x2 − y2
2σ2

)
(4.1)

where Dx is the image gradient in the x direction, Dy is the image
gradient in the y direction, p = 1 is the symmetry order and σ = 1/4
defines the effective size of the kernel. Convolution with this complex
kernel generates a complex output image. The magnitude of the output
image is the edge strength while the phase describes the edge orienta-
tion. The magnitude image is thresholded and the resulting image is
then thinned (morphological thinning (Ji et al., 1992)) until the edges
have a width of a single pixel. The image is divided into 8×8 pixel
bins. For each bin is a representative edge located. This reduces the
computational requirements in the following steps significantly.
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θBA x

y

A

B

Figure 4.3: How the location and orientation of edge B described
relative to edge A. A coordinate system is placed on edge A and oriented
such that the x axis follows the direction of the edge. The location of
edge B is described using this coordinate system and the difference in
orientation is described by θBA.

4.1.2 Relative edge descriptors

To describe the location of B relative to A, a coordinate system is po-
sitioned with origin at A and direction of the x axis parallel to the
detected edge with the y axis pointing in the direction of highest in-
tensity (into the vegetation) in the original image, see figure 4.3. The
position of edge segment B relative to edge segment A is calculated as

~xBA = (~xB − ~xA)

[
cos θA sin θA
− sin θA cos θA

]
(4.2)

θBA = θB − θA + z · 2π Z ∈ −1, 0, 1 (4.3)

where ~xC and θC is used to describe the Cartesian coordinates and the
orientation of general edge segment C. The integer Z is chosen such
that θBA is in the interval [0, 2π]. The relative location is then defined
by three values, the two coordinates from ~xBA and the orientation
θBA. For calculating the feature descriptors the following additional
descriptors are added: the distance between edge segments dst and the
magnitude of the direction change |θBA|.
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4.1.3 Projected density plots

To get a rough idea of the relative edge positions of some test images,
the observed relative edge orientations were projected to different 2D
spaces where methods from kernel density estimation (Silverman, 1986)
were used to visualize the densities. Projections of the relative edge
orientations for three test images are shown in figure 4.4. The axis
limits are shown in table 4.1. Notice how the long straight edges of
monocots are visible in the distance vs. angle plot (last row in the
figure).

Variable Lower bound Upper bound
x -125 125
y -125 125
dst 0 125
θ -180 180
|θ| 0 180

Table 4.1: The Gaussian features are all centred within these limits
in the 5D space.

4.1.4 Gaussian features

The 2D density plots contains information about the structure of veg-
etation in the image. To condense this information into feature values
suitable for use in a weed pressure predicting model, the following Gaus-
sian features were applied. Each of the Gaussian features are defined
in terms of a location ~µk in the 5D vector space defined in section 4.1.2
and a set of acceptable deviations σk (one for each dimension) of the
coordinates. For the edge segment pair ~xl and ~xm the function f(. . .)
calculates the increment of the k’th Gaussian feature.

f(~xl, ~xm, ~µk, σk) = exp


−

∣∣∣∣∣
~h(~xl, ~xm)− ~µk

σk

∣∣∣∣∣

2

 (4.4)

where σk is a diagonal matrix with coordinate weights along the diag-
onal and ~h(~xl, ~xm) is a description of position and orientation of the
m’th edge in relation to the l’th edge.
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Figure 4.4: Projected density plots. Each row consists of a description
of the used axes and three density plots based on images of crop only,
both crop and weed and weed only. The analyzed images are shown in
figure 4.5. Axis limits are given in table 4.1.
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The edge segment l, is compared to all edge segments within a threshold
distance (in neigh(l)). The contribution of the l’th edge segment to the
Gaussian feature is given by.

dF (l, ~µk, σk) =
∑

m∈neigh(l)
f(xl, xm, ~µk, σk) (4.5)

The full Gaussian feature value is then defined using the sum

Fk =
1

n

∑

l∈E
dF (l, ~µk, σk) (4.6)

where n is the number of edge pairs with a distance less than 125 pixels.

4.1.5 Estimation of weed pixel percentage

Given the Gaussian features calculated in section 4.1.4 the weed pixel
percentage is estimated with the linear model

w =

5∑

k=0

ak · Fk (4.7)

The value of F0 does not depend on the analysed image and is set to
one.

4.1.6 Generation of test images

To train the system a large set of training images with known weed
coverages are required. It is not feasible to annotate enough images by
hand, so a set of constructed test images with known weed densities
were generated. Each image was generated by placing random exam-
ples of crop and weed plants in the image. Some examples are shown in
figure 4.5. The random plant examples were taken from a set of man-
ually segmented images. By tracking the number of vegetation pixels
from crop and weed templates the true weed density was determined.
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Figure 4.5: Examples of test images with weed coverage percentages
of 0%, 19% and 100%.

4.1.7 Training of the system

Training of the system consists of choosing a set of Gaussian features
and a linear relation between the Gaussian features and the weed cover-
age percentage. Each Gaussian feature is described by a vector ~µk and
position uncertainties ~σk in the 5D space spanned by x, y, dist, θ and
|θ|. Instead of selecting the Gaussian features by hand, a brute force
approach were chosen. A large set of Gaussian features were sampled
from from a uniform distribution of points within the limits given in
table 4.1 and with position uncertainties in the range [5, 1000].

Feature values for the set of sampled features were calculated for all the
test images. The five best Gaussian features for predicting the weed
pressure in the training set were selected using a heuristic hill climbing
method.

4.2 Results and discussions

This section presents results based on training Modicovi on a set of test
images and testing the algorithm on the same set of images.

4.2.1 Feature selection

A set of 1000 test images were generated. For each test image the
weed density is known. Similarly a set of 1000 Gaussian features were
generated by sampling. For every test image all Gaussian features were
calculated and stored as intermediate results. The five best Gaussian
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features for estimating the weed density were found using a heuristic
method. The position and uncertainty describing the Gaussian features
are listed in table 4.2 and 4.3 and the related feature weightings αk are
listed in table 4.4.

The relation between estimated and true weed coverage is visualized in
figure 4.6. R2 values for the training and the validation set are 0.7623
and 0.7843 respectively.

k θ dst x y |θ|
1 118.4331 46.6759 48.9991 39.9160 7.3202
2 -95.6296 18.9219 13.7717 102.8588 21.2321
3 -8.2292 8.9513 -30.6901 -0.1807 50.3614
4 -14.9098 44.5021 -34.4460 -57.6941 53.7109
5 -24.1421 104.5940 -65.5361 13.7205 77.9058

Table 4.2: Locations ~µk of the five selected Gaussian features.

k θ dst x y |θ|
1 665.6258 645.2558 71.9448 655.9676 37.7467
2 24.8503 9.0433 36.6404 97.1721 92.5668
3 117.1818 12.9288 813.1579 17.5869 27.3123
4 6.5739 33.0036 531.1982 89.5006 312.9555
5 133.6098 437.9738 230.6548 760.5225 18.5108

Table 4.3: Widths ~σk of the five selected Gaussian features.

4.2.2 Analysis of test image

The image shown in figure 4.2 was taken through the process described
in this chapter. Table 4.4 lists the five Gaussian feature values that were
derived from the edge image. By addition of the weighted features, a
weed coverage percentage of 31% were found. The image contains 2517
pixels from dicots / weeds and 8770 pixels from maize, which gives a
weed percentage of 22.3%.
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Figure 4.6: Correlation between actual and predicted weed percentage.

4.3 Summary of weed pressure estimation

A method, Modicovi, that can estimate the dicot weed coverage in
maize fields have been described and tested. The method can han-
dle images with occluded plants which is often seen under real world
conditions. Test images are generated by overlaying crop and weed
models. The weed pixel percentage is used for quantifying the weed
pressure. Modicovi can estimate the weed pixel percentage, the esti-
mate is strongly correlated with the true weed pixel percentage. While
the principle of Modicovi seems promising there is still room for sig-
nificant improvements. Alternative measures derived from the relative
edge locations could improve the accuracy of the generated estimates.
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k 1000 · Fk ak 1000 · Fk · ak
0 1000.000 0.5149 514.9
1 141.891 -1.9318 -274.1
2 0.977 180.8226 176.7
3 7.491 1.5482 11.6
4 2.533 -8.6629 -21.9
5 61.112 -1.5241 -93.1

314.0

Table 4.4: Gaussian feature values Fk derived from the test image.
Feature weights, ak, are multiplied with the feature values and the re-
sulting numbers are summed op. The sum is the estimated weed per-
centage.
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Chapter 5

Locating individual
leaves

The traditional methods for plant recognition devised by Guyer et al.,
1986 and Weis et al., 2007 assumes that plants do not occlude each
other. This assumption is seldom valid under real world conditions,
where plants often occlude each other. If not compensated for, occlu-
sions will reduce the correct classification rate when recognizing plants
and the position of plant centres will be determined with large errors.

The problem of occluded plants can be handled with different methods
which are listed below:

1. Models of the plant shape that can be fitted to parts of the bound-
ary. Active shape models described by Persson et al., 2008 is one
example of this approach.

2. The individual plants can be ignored and the average weed pres-
sure can be estimated in the entire image, this was covered in
chapter 4.

3. Extraction and analysis of plant parts that are not occluded.

A few authors have addressed method 3 from the list above, a summary
of their contributions is given here. Franz et al., 1991 extracted leaves
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Figure 5.1: Left image: Bispectral image in false colours used for leaf
detection. Right image: Segmented version of the left image.

from plant boundaries of free standing seedlings of velvetleaf (Abutilon
theophrasti), ivyleaf morning glory (Ipomoea hederacea), giant foxtail
(Setaria faberi), and soybean (Glycine max ). When several plants oc-
cluded each other this method failed to extract individual leaves. De-
tection of individual leaves in colour images were addressed by Neto
et al. (2006) and Tang et al. (2009). Neto et al., 2006 extracted indivi-
dual leaves based on their colour and texture using Gustafson–Kessel
clustering. Tang et al., 2009 detected individual leaves by combining
watershed segmentations based on intensity, hue and saturation.

This chapter describes two methods for extracting individual leaves in
a segmented image. The methods were developed for targeting seedling
leaves of sugar beets in the early growth stages (up to BBCH14), an
example is shown in figure 5.1. When leaves have been detected, their
position and shape can then be analysed. This information can be
used to recognize the plant species or determine where the plant stem is
located. Information about crop plant locations are vital for mechanical
weed control methods that operates in the crop row, as they have to
stay clear of the plant stem.

5.1 Materials and methods

Image acquisition is described in section 5.1.1. Section 5.1.2 describes
a method for locating individual leaves based on leaf boundary cur-
vature and a subsequent search for a leaf stem. A method based on
the convex hull concept is presented in section 5.1.3. The leaf cut off
points suggested by the two methods can often be improved by local
search, section 5.1.4 describes such a method. The last section presents
a method that use the position of detected leaves to estimate position
of the plant stem emerging point.
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Figure 5.2: Example input plant shape with markings indicating the
clockwise tracking of the boundary and the associated curvature. Min-
ima in the curvature measure indicates leaf tips.

5.1.1 Image acquisition

Bispectral images of sugar beet seedlings were acquired with the Robo-
vator and segmented by thresholding the resulting NDVI image. Pixel
width and height were 1.1 mm. For more information about the image
acquisition setup and the curvature based leaf extractor see paper III.

5.1.2 Curvature based leaf detection

The curvature based leaf detector is a two stage algorithm for locating
leaves. Each stage is based on one of two characteristic properties of
leaves:

• The tip of a leaf is convex with a high curvature.

• The leaf is attached to the remaining part of the plant with a
thin stem.

In stage 1 probable locations of leaf tips are found by analysing cur-
vature of the plant boundary. In figure 5.2 an example plant shape is
shown together with a measure of the perimeter curvature. Negative
values indicate convex regions where the boundary curves towards its
interior like a circle, leaf tips candidates are located on local minima
in the estimated curvature. Positive values refers to concave regions
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which often are found near the plant stem or when leaves occlude each
other.

In stage two the probable leaf tip locations are examined individually.
From the leaf tip a search for a thin leaf stem is initiated. If a thin
stem is located, a leaf is detected.

5.1.3 Convex hull based leaf detection

The convex hull based leaf detector will locate things that stick out from
the contour of an object. An example of the process is shown in figure
5.3, references to the subfigures are placed in parenthesis. The first step
is to calculate the convex hull of the input contour, this corresponds to
placing a rubber band around the plant contour (A). Sticking to this
rubber band metaphor, the next step is to make the rubber band follow
the perimeter more tightly, as shown in figure (B), this is achieved by
pinning the rubber band to certain locations on the contour. These
locations are identified by locating the point on the contour that has
the largest distance to the corresponding part of the rubber band (C).
If this distance is larger than a certain threshold distance the rubber
band is pinned to this location. This process of pinning the rubber
band at certain locations on the boundary is repeated as long as points
with a distance to the nearest rubber band is above the threshold.

Pin locations tend to gather near the plant centre. The boundary
between two pin locations will often contain a single leaf. A local
search, as described in section 5.1.4, is then used to find the best leaf
cut off locations. To detect and remove false leaf detections, the ratio

Ls/Lp (5.1)

is computed and compared to 0.3. Ls is the distance between leaf cut off
points and Lp is the length of the perimeter between the cut off points.
If the ratio is above this threshold the leaf is discarded, otherwise a leaf
has been detected. The threshold value of 0.3 was chosen empirically.
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A B

C D

Figure 5.3: Examples of steps in the convex hull leaf detector. A)
Initial configuration of the rubber band with no pinnings to the contour.
B) Final state of the rubber band after the rubber band were pinned
to the contour at eleven locations. C) Location of one of the pinning
points. D) The four detected leaves marked with blue.
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5.1.4 Improving leaf cut off positions by local search

The two described methods produces each a list of two points that
describe where a leaf can be cut out of the input boundary. For post
analysis it is preferred that the leaves are cut off as close to the plant
centre as possible. This makes it easier to recognize leaves based on
their shape and to derive accurate information about plant centres.
To improve the leaf cut off points for a specific leaf, the the following
quantity is maximized using local search.

α · Lp − Ls (5.2)

The value α is the weight of maximizing the perimeter length compared
to minimize the stem width, values near 0.7 were found to give the best
results. The examined neighbourhood consists of all combinations of
moving both leaf cut off points at most two steps forward or backwards.
When the local search reaches a local maxima the search is stopped.
Location of leaf cut off points before and after the local search is shown
in figure 5.4.

Figure 5.4: How local search improves the leaf cut off points by mini-
mizing the distance between cut off points and maximizing the perimeter
length between cut off points. The initial cut off location is shown on
the right and the final location is shown on the left.
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5.1.5 Estimation of plant stem emerging points

The located leaves can be used to estimate the position of the plant
stem emerging point (PSEP) as described in paper III. The position
and orientation of a detected leaf is described in terms of its centre
of mass C and the midpoint S between the two leaf cut off points,
this is illustrated in figure 5.5. The true PSEP locations were marked
manually and the position of the PSEPs relative to detected leaves
were modelled by the multivariate normal distribution described by
the parameters ~xlc and Σlc:

p(~x) =
1

2π |Σlc|
exp

[
−1

2
(~x− ~xlc)TΣ−1lc (~x− ~xlc)

]
(5.3)

where ~xlc is the average stem location in the leaf coordinate frame
and Σlc is the covariance matrix that describes the uncertainty in the
stem location. The ellipses in figure 5.5 are contour lines of p(~x). The
probability of finding the PSEP inside the ellipses are 68%, 95% and
99.7% respectively.

x

y

C

S
R 20mm

Figure 5.5: Model for plant stem location in leaf frame. The ellipses
are contour lines for the probability density function that contains 68%,
95% and 99.7% of the volume under the probability density function.

When two leaves were detected on the same plant the position and ori-
entation of both leaves were used to estimate the location of the PSEP.
Information from both observations were combined by multiplying the
probability distributions:

pC(~x) ∝ pA(~x) · pB(~x) (5.4)
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Leaf one

Leaf two

Raw models

Combined model

Figure 5.6: Two root models can be combined by multiplying their un-
derlying probability distributions, this leads to a better estimate of the
plant stem emerging point. Contour lines for the involved probability
distributions are shown with ellipses. Observe how the probability dis-
tribution of the combined root model is more condensed than the two
original root models.

This process is visualized in figure 5.6, the ellipses indicate contour
lines as in figure 5.5 where the 68% and 95% contour lines are not
shown for the detected leaves. Equation (5.4) can be generalized to
an arbitrary number of leaves by increasing the number of probability
density functions that are multiplied on the right hand side.

5.2 Results and discussions

The two leaf detectors were tested under varying conditions. Leaf detec-
tor performance is evaluated in section 5.2.1. Accuracy of plant centre
location based on detected leaves are given in section 5.2.2. Finally are
the use of leaf shapes for plant recognition discussed in 5.2.3.
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5.2.1 Detection of individual leaves

The methods based on curvature and convex hull for detecting indivi-
dual leaves were used to locate leaves in a test image. A part of this
image is shown in figure 5.1. 200 well defined leaves with no occlusion
of other leaves were manually located in the image. The number of
detected leaves for both detectors are shown in table 5.1. The two first
leaf detectors each found around 40 leaves that were not well defined,
this is marked as false positives in the table. More than 82% of the well
defined leaves were found by these detectors. To decrease the number
of false positives the threshold for accepting leaves according to equa-
tion 5.1 were reduced to 0.1. This removed a large fraction of the false
positives from the detector but also removed some of the well defined
leaves.

Method # Leaves Real leaves False positives Running time
Curvature 200 165 35 2.9 s
Convex hull (0.3) 230 189 41 1.0 s
Convex hull (0.1) 140 133 7 1.0 s

Table 5.1: Number of detected leaves, false positives and running time
of the leaf detector methods.

5.2.2 Estimation of plant stem emerging points

The model for root locations relative to the detected leaves were esti-
mated based on 223 observations of detected leaves and the associated
plant stem emerging point location. The model parameters for sugar
beet seedlings at the BBCH12–14 growth stage were found to be

~xlc =

(
5.40
0.24

)
mm Σlc =

(
12.65 1.28
1.28 2.35

)
mm2 (5.5)

The detected leaves in three test images were used to estimate the true
PSEP locations. By comparing the estimated PSEP locations with the
manually marked ground truth values, the estimation error could be
investigated. Figure 5.7 shows the fraction of estimates with an error
larger than a certain threshold distance. Estimates based on a different
number of detected leaves are shown. When two or more leaves of a
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plant were detected the plant stem emerging point could be located
with an average error less than 1.9 mm. The average error rose to
3.3 mm when information from a single leaf were used to estimate the
plant stem emerging point. These errors should be compared to what
can be achieved by plant mapping systems based on RTK GPS. Sun
et al., 2010 found that 95% of transplanted plants were within 51 mm
from the mapped location. The position error of GPS located plants
are thus an order of magnitude higher that the error from the leaf
detection method.

Threshold distance from guess to nearest PSEP location [mm]
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Figure 5.7: Distance from estimated PSEPs to the nearest real PSEP
location. The line colours indicate the source of the PSEP estimates.
� one leaf, � two leaves, � three leaves, � four leaves and � man-
ual annotation. Estimates based on two or more leaves are almost as
accurate as the manual annotation.

5.2.3 Classification of individual leaves

Detection of individual leaves can be used to recognize plants in oc-
cluded scenes. Several researchers have already addressed the task of
recognizing plant species based on leaf shapes (Hearn, 2009; Du et al.,
2007; Camargo Neto, 2005).
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The main advantage of recognizing plants based on their leaf shape
compared to the shape of the entire plant is a drastic reduction in
shape variations. The shape variations of sugar beet seedlings were
investigated with active shape models by Persson et al., 2008. An ac-
tive shape model consists of a mean shape and a number of modes of
variation. The five modes of variations that best explains the observed
plant shapes are shown in figure 5.8. Four of the five modes are related
to variations in leaf positions between cotyledons and true leaves.

5th mode

4th mode

3rd mode

2nd mode

1st mode

−2
√
λk 2

√
λk

bk

Figure 5.8: Leaf shape variations of sugar beet seedlings. Notice that
a majority of the modes of deformation are related to variations in leaf
positions. From Persson et al. (2008).

5.3 Summary of locating individual leaves

Automatic location of individual leaves in an image containing several
plants is one approach to handle occlusion. Two methods for leaf ex-
traction has been described, one based on boundary curvature and the
other based on convex hulls. Both methods were able to detect more
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than 82% of the non occluded leaves in test images.

Extracted leaves were used to estimate the location of plant stem emerg-
ing points. The average error of the estimated positions were 3.3 mm
when position and orientation of a a single leaf was used for the predic-
tion. When two or more leaves were used the average error got below
1.9 mm.

The use of extracted leaves for plant recognition seems promising. The
variation in shape is significantly smaller for individual leaves than for
whole plants. Leaf based recognition would also be a better approach
to identify partially occluded plants
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Chapter 6. Microsprayer

Chapter 6

Microsprayer

When the crop and weed plants in an area have been located, it is time
to use this knowledge to control the weeds without harming the crops.
One approach for control of individual weed plants are microspraying.
A microsprayer system that can target individual weed seedlings is
described in this chapter. The system utilizes visual tracking of plants
to estimate the current speed and relies on shape based classification
to distinguish between crop and weed plants. The efficiency of the
microsprayer were tested under various conditions and the results are
presented at the end of the chapter. The system is described in detail
in paper IV which covers the first set of experiments.

Microsprayer systems for in–row weed control were first described by Lee
et al. (1999). The system could distinguish between tomato and weeds
and target individual plants recognized as weeds. The sprayer moved
at a velocity of 0.33 m/s relative to the plants and sprayed 47.6% of
the weeds and 24.2% of the tomatoes. Lamm et al., 2002 presented a
system for controlling narrow leaved weeds in cotton fields. Søgaard
et al., 2007 examined the application accuracy of a microsprayer sy-
stem. The microsprayer had 20 nozzles placed with a distance between
neighbouring nozzles of 5 mm. The system aimed at circular targets
with an area of 110 mm2 and hit on average 2.6 mm from the centre of
the target. A system for controlling volunteer potatoes using a coarse
microsprayer system were built by Nieuwenhuizen et al., 2010b.
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Figure 6.1: Example image from the vision system. Hard shadows and
specular reflections were avoided by the use of indirect illumination.

6.1 Materials and methods

The materials and methods sections presents the basic components of
the microsprayer system and how the system was tested. Additional
information about the sprayer system and the small scale testing can
be found in paper IV.

6.1.1 Image acquisition and spray system

Image acquisition were performed with a CMOS camera (PixeLINK
PL-B742F-R). The field of view covering an area of 140 mm × 105 mm
with a resolution of 800 pixels × 600 pixels. The area were illuminated
indirectly by 18 3 W white LEDs (ProLight PG1X-3LXS-SD) to avoid
specular reflections and hard shadows. An example image from the
vision system is shown in figure 6.1.

The spray system was based on a Willett 3150 Si/800 inkjet printer
head, which were designed to print text on cardboard boxes in an in-
dustrial environment. Six spray nozzles, placed 10.5 mm apart, were
used in the experiment. The distance between the spray nozzles and
the soil surface was approximately 100 mm.
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6.1.2 Motion estimation

The time between a spray command is sent to the spray system and the
spray liquid hits the target, is a fixed delay, which has to be taken into
account. In practice this means that the vision system needs to predict
when a certain object gets below one of the spray nozzles and issue the
spray command such that the spray liquid hits the target. Accurate
predictions rely on knowing the current motion. The acquired images
were scaled down and converted to monochrome images. The motion
between two images were determined from the cross correlation between
the two images.

6.1.3 Plant recognition

Each green object detected by the vision system had its shape described
in terms of its area and the seven Hu moments. The Hu moments
are shape descriptors that are invariant to scale, rotation and transla-
tion (Hu, 1962). A nearest neighbour classifier (Bishop, 2007) using the
shape features were used to distinguish between crop and weed plants.
More details about the classifier can be found in paper IV.

6.1.4 Small scale testing

In the first test, the vision and microsprayer system were mounted on
top of a conveyor belt. Maize (Zea mays L.) were used as a crop model.
Oilseed rape (Brassica napus L.) and scentless mayweed (Matricaria
inodora L.) were used as weed models. All plants were at the BBCH10
growth stage and the classifier were trained on a few samples of all
plant types. 1 L pots containing both crop and weed plants were placed
on the conveyor belt and moved below the active microsprayer with a
speed of 0.5 m/s. The spray liquid were water mixed with RoundUp Bio
(Monsanto Europe) with a concentration of 5 g/L. The experimental
setup and some of the plants used in the experiment is shown in figure
6.2. The growth stage of the treated plants were evaluated visually two
weeks after the microsprayer treatment. At the same time the plant
fresh weights were measured of the oil seed rape plants.
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Figure 6.2: The microsprayer test setup and some of the plants used
in the small scale experiment.

6.1.5 Large scale testing

The goal of the large scale testing were to gain information about how
different parameters affected the performance of the microsprayer sy-
stem. Answers for the following questions were sought. Does the plant
density affect the ability of the system to hit the plants? How fast can
the sprayer move and still hit the plants reliably? Is a high concentra-
tion of glyphosate in the spray liquid required?

The camera and microsprayer were mounted inside a bicycle trailer
during the test. The complete system were then dragged over the
plants that should be treated, this setup is shown in figure 6.3. Three
different velocities (0.25 m/s, 0.5 m/s and 0.7 m/s) were used for the
experiments. The spray liquid was water mixed with glyphosate. Two
different concentrations, 5 g/L and 20 g/L, of the active compound were
used. The spray system was tested on nightshade (Solanum nigrum)
seedlings at the BBCH12 growth stage. 24 seedlings were placed in the
pattern shown in figure 6.4, the first 12 seedlings had an approximate
density of 100 plants per square meter and the remaining 12 had a
density of 300 plants per square meter.

During the microsprayer treatment, the spray control computer logged
all analysed images, all planned spray events and when each spray
command were sent to the microsprayer. The idea with the logging
system were to investigate cases where the system had failed to deposit
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Figure 6.3: The microsprayer setup used for the large scale experi-
ment. Bicycle trailer equipped with the sprayer system is ready treat
the plants in the black plant trays. Three trays with plants in a low
density pattern is placed nearest the sprayer while an single tray with
high plant density is at the bottom of the image.

glyphosate on seedlings. It was then possible to investigate whether the
system had failed to issue spray commands or had targeted the seedling
but not hit it properly.

Immediately after spraying the seedlings were moved to 1L pots and
placed in a green house. Three weeks after treatment the plants were
harvested and their fresh and dry weight were measured.

6.2 Results and discussions

6.2.1 Small scale testing

163 plants in total were treated by the microsprayer system. The distri-
bution of plants on the different plant types and the number of plants
that followed the expected growth is presented in table 6.1. All maize
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Figure 6.4: Plant pattern for microsprayer testing. The twelve plants
to the left is placed in a low density pattern with 100 m−2 while the
remaining twelve plants had a density of 300 m−2.

Plant k n f 95% CI
Maize (crop) 33 33 1.00 [0.92; 1.00]
Scentless mayweed 48 76 0.63 [0.52; 0.73]
Oilseed rape (weed) 3 54 0.06 [0.01; 0.14]

Table 6.1: Results of visual inspection of treated plants. k is the
number of plants following the expected growth, n is the total number
of plants, f is the fraction of normal growing plants and 95% CI is the
95% credible interval of f .

plants followed the expected growth which indicate that the system did
classify these plants as crops. The oil seed rape plants were effectively
treated by the microsprayer as only 6% of the oilseed rape followed
normal growth. The average size of the oilseed rape plant were ap-
proximately 11 mm by 14 mm The weight distribution of reference and
treated oil seed rape plants are shown in figure 6.5.

The growth of 37% of the scentless mayweed plants were reduced. This
reduced efficiency can partly be explained by the size of the plants.
Some of the smaller plants cannot be hit by the sprayer as there is
an approximate 8 mm wide strip between neighbouring spray nozzles
in which no spray liquid is deposited. At the time of the experiment
the leaf area of scentless mayweed plants were approximately 3 mm by
8 mm.

The small scale test showed that the system could distinguish between
crop and weed plants in real time and effectively target and hit plants
larger than 10 mm by 10 mm.
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Plant fresh weight [g]
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Figure 6.5: Fresh weights of oil seed rape plants two weeks after mi-
crosprayer treatment. Only three plants had weights comparable to the
reference population while 51 had weights significantly below.

6.2.2 Large scale testing

In the second evaluation of the system 672 plant seedlings were treated
by the microsprayer . The log files contained information on every acti-
vation of the spray system. By comparing the logged spray activations
with the plant pattern shown in figure 6.4, the location of each of the
plant seedlings were marked. Each location was specified by a time of
passage and the nozzle position the seedling passed under. Then the
number of spray activations were counted for each plant. The relation
between the forward velocity and the number of spray activations is
visualized in figure 6.6. The number of spray activations is seen to
be inverse proportional to the forward velocity although the individual
variations are large for the lowest velocity.

A direct measure of the effect by the microsprayer treatment is the
plant fresh weights. The distribution of plant weights under different
experimental conditions are shown in figure 6.7. The weight distribu-
tion of the reference plants is visualized as the black line. For velocities
of 0.25 m s−1 all plants had a fresh weight lower than 9 g which is equal
to or lower than all the reference plants. A general observation is that
the ability to control growth of plants is reduced when the velocity is
increased and the glyphosate concentration is reduced.

While figure 6.7 gives information about the average performance of
the system it does not explain why some of the plants were not affected
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Figure 6.6: Relation between forward velocity and number of spray
activations. When the velocity is increased, the number of spray acti-
vations decreases.

by the microsprayer treatment. Based on information in the log files,
the set of plants that activated the spray system was found. The set
contained 90% of the treated plants and their weight distributions are
shown in figure 6.8. Nearly all the plants that activated the spray
system had significantly reduced fresh weights. Why 10% of the plants
did not activate the spray system is still not known.
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Figure 6.7: Weight distributions of treated plants shown as Empirical
Cumulative Distribution Functions (ECDFs). The reference population
is shown in black. The numbers in the lower left corner of each plot is
the average plant fresh weight of all plants exposed to this treatment.

Some images of the plants three weeks after the spray treatment are
shown in figure 6.9. All plants in the reference groups had reached
growth stage 23-25 according to the BBCH scale (Hess et al., 1997).
Only a small set of the treated plants had reached this growth stage.
Most of the plants had a size similar to the size at the time of spraying.

6.3 Summary of microsprayer

A microsprayer system have been implemented, it consists of 6 nozzles
that can be activated independently of each other. A vision system
estimates the motion and plan spray actions based on plant position
and shape. First the system was tested on 163 plants of three species,
two weed models and one crop model. 1L pots containing examples of
all three plant species were moved below the microsprayer system at a
velocity of 0.5 m s−1. All crop plants were unaffected by the treatment
while 94% of the oilseed rape seedlings were killed or had their growth
significantly delayed.
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Figure 6.8: Weight distributions of the plants that activated the spray-
ing system. The plants have a significantly lower weight than the group
of treated plants.

Figure 6.9: Reference plants (left) and a fraction of the treated plants
(right). Most of the treated plants were eradicated, only a few survived
the treatment.
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Chapter 6. Microsprayer

To investigate how the microsprayer system reacted to changes in dif-
ferent system parameters like velocity a more detailed evaluation was
conducted. Black nightshade were used in the test where 672 plants
were treated by the microsprayer system. Roughly 90% of the plants
activated the spray system. The evaluation revealed that when the
system was activated it hit the targeted plant.
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6.3. Summary of microsprayer
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Chapter 7

Localized feature based
classification

Plant recognition can be based on different kinds of information. A
system that uses shape or spectral features for crop plant recognition
relies on a training set consisting of examples of typical crop and weed
plants. The best performance of such a system is when the training
set are representative of the group of plants that should be classified.
It is not feasible to gather samples from all possible scenarios due to
a huge number of combinations of different growth stages, soil condi-
tions, availability of water and others. Even if such an all circumstances
training set were acquired large in–class variations would lead to low
recognition rates (Feyaerts, 1999). This chapter investigates an alter-
native set of features, context features, which are based on relative
plant locations and knowing the structure in which plants are sown.

The idea is to mimic the mental process of a person placed in a ran-
dom field, like shown in figure 7.1. Even if the person had never seen
a field before, he would recognize the row structure and notice that
some plants would appear at regular intervals in the row. The plants
that follow this row structure are most likely crop plants while plants
outside the structure are probably weeds. By looking for a known row
structure, a system can automatically generate a training set for shape
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7.1. Shape based crop recognition

based plant recognition based on observations in the field. This train-
ing process could be repeated several times during the weed control
operation and the shape based plant recognition could then adapt to
in–field variations in plant appearance.

Figure 7.1: Row structure seen in sugar beets. For humans the task of
recognizing what is in the row is easy. With some additional informa-
tion about the row structure a computer can also handle this problem.

Adaptive classifiers have been described earlier in the literature for
crop recognition based on spectral signatures. Feyaerts (1999) used
an imaging spectrograph to measure the reflection spectra of crop and
weed plants. Spectra recorded in the row were marked as unknown
while spectra of plants out of the row were marked as weeds. The
spectra were grouped according to their similarity and each group were
marked as either crop or weed. These automatically annotated spectra
were then used for training a classifier that could distinguish between
crop and weed plants.

Training and discrimination between sugar beets and volunteer pota-
toes using an adaptive classifier were presented by Nieuwenhuizen et
al. (2010a). Input features for the classifier were colour indexes and
texture descriptors. Objects near the row centre were used as crop
examples and objects outside of the row were used as weed examples.
Two first–in–first–out (FIFO) queues were used for storing 100 training
examples of crop and weed objects respectively. The adaptive classifier
was compared to a static classifier and the adaptive classifier performed
significantly better than the non–adaptive classifier.

7.1 Shape based crop recognition

Recognizing plants based on their shape were introduced by Guyer et al.
(1986). Guyer assumed that each image only contained a single plant
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Chapter 7. Localized feature based classification

and calculated features describing the moment of inertia, elongation
and complexity. With a set of 8 features they were able to distinguish
between corn and non–corn with a 9% error rate. This approach to
recognizing plants has got a lot attention (Lee et al., 1998; Tian et al.,
1999; Hemming et al., 2001; Du et al., 2007; Weis et al., 2007; Weis et
al., 2010). The list of suggested features is quite long but some general
properties of the suggested features are that they

• Are invariant to translation and rotation.

• Are invariant to scale (not always required).

• Are weakly affected by small deformations (eg. leaf movements).

• Can be used to discriminate between two classes of interest (typ-
ical crop and weed).

The idea of training the classifier on a known set of crop and weed ex-
amples before entering the field leads to sub optimal plant classification
results. The problem is that there is a large variation in the appearance
of both crop and weed plants through the whole field. The variations
in segments of the field is expected to be significantly lower.

7.2 Context based features

Instead of relying 100% on shape based recognition of crop plants,
the shape information might be complemented with a different type
of information which is less affected by changes in growth stage, soil
conditions and similar. For crops planted in a row with a fixed distance
between neighbouring crop plants, features based on the position of
nearby plants have shown promising results (Åstrand et al., 2004).

An example of a context based feature is the position score introduced
in paper V. The score is constructed such that plants in the row struc-
ture will get relative high position values while plants outside the row
structure get low values. The position score of plant i when looking for
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7.3. Limitations on context based features

N neighbour crop plants is given by:

ci =

N∑

m=1

[
max
k

exp

(
−||~xk − ~xi −m · ~d||2

2s2σxσy

)]
(7.1)

Where ~xi is the position of the i’th plant, ~d is the expected distance
between neighbouring crop plants and s is a twiddle factor. The posi-
tion uncertainty of the crop plants along and perpendicular to the crop
row is described by σx and σy.

7.3 Limitations on context based features

There is a direct limitation on the achievable crop recognition rate that
can be reached with context features under certain conditions. Paper
V introduces the normalized weed pressure λ. The normalized weed
pressure depends on the weed density ρ (plants per square metre) and
the deviation in crop plant positions from the expected crop pattern.
The deviation is modelled with a normal distribution described by the
uncertainty along the row σx and the uncertainty perpendicular to the
row σy. Given these measures, the normalized weed pressure is given
by

λ = 2πρσxσy (7.2)

If the plant nearest to a known seeding position is classified as a crop,
the probability that the classification is correct is described by the
positive predictive values (PPV) given by:

PPV =
1

1 + λ
(7.3)

When the normalized weed density increases the accuracy of the context
classifier is reduced. In the case were the location of the sowing pattern
should be estimated from the data, the recognition rate will be lower.
Simulations in paper V show that recognition rates can get close to

1

1 + 2λ
(7.4)
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Chapter 7. Localized feature based classification

The relation between weed density, crop position uncertainty, normal-
ized weed pressure and the upper limit on the context based crop recog-
nition rate described by equation (7.2) and (7.3) is visualized in the
nomogram presented in figure 7.2.

7.4 Local training of shape based classi-
fiers based on context features

Shape based classification and context based crop recognition both have
advantages and disadvantages, an overview of these is shown in table
7.1. Shape based classification works on the plant level (or even on
the leaf level as suggested in chapter 5) and can thus recognize plants
at high weed pressures. Shape based classification is vulnerable to
variations in plant shape between the field and the training set. Due to
local variations of plant shapes in the field, the use of a single training
set for the entire field will lead to inferior performance. The main
advantage of context features is that they are robust to variations in
soil conditions and growth stage of crop and weed plants. The value
of context features is decreased when the normalized weed pressure
is increased. If a crop recognition rate above 95% is required, the
normalized weed pressure must be below λ ∼ 0.05.

Method Pros Cons
Shape Independent on weed pressure Shape variations
Context Stability of features Requires low weed pressure

Table 7.1: Overview of advantages and disadvantages of classifiers
based on either shape or context features.

Examination of these properties leads to the conclusion that a com-
bination of shape and context features for crop recognition could be
more robust than systems relying on either shape or context features.
If the context features could be used to train a shape based classifier
given samples of plant shapes acquired a moment ago, the shape based
classifier would be able to adapt to in–field variations in shape of crop
and weed plants.

In the remaining part of this section two context trained are described.
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Chapter 7. Localized feature based classification

The first is based on shape features and tested on constructed fields
based on real plant images. The second classifier demonstrates the
advantage of an adaptive classifier that can adjust to local variations.

7.4.1 Construction of training images

Test images were constructed based on samples of different plants.
Oilseed rape at the BBCH12–13 growth stage were used as crop plants
while cornflower at growth stage BBCH10–12 were used as weeds. 64
images of the crop and weed models were used for constructing the
synthetic images. Crop plants were placed in a row structure with a
fixed distance between neighbouring plants, this pattern were distorted
by displacements sampled from Gaussian distribution with deviation
σ in both x and y direction. A number of weed plants were spread
uniformly across the simulated field.

7.4.2 Shape descriptors

The shape of plant objects were described with these features: area,
elongation, length of major and minor axes derived from image mo-
ments and ten features based on a distance transform. The distance
features were introduced by Giselsson, 2012 and are determined the
following way. The distance from all pixels in the shape to the nearest
boundary pixel is determined. All these distances are then sorted by
value and 10 equidistant values are extracted as shape descriptors.

7.4.3 Context trained shape based classifier

An example of a shape based classifier is presented below. Given an
input image the system locates plant objects and calculates position
scores using equation 7.1 for each plant object. The plants with posi-
tions scores below the 20% percentile were marked as weed examples
while the plants with positions scores above the 80% percentile were
used as crop examples. A Naive Bayes classifier (as described in chapter
3) was then trained using shape features derived from these crop and
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7.4. Local training of shape based classifiers based on context features

weed examples. Finally were the classifier applied to all plant object
in the input image.

The training process of the classifier is visualized in figure 7.3. The fig-
ure contains the input image, the plants recognized as crops and weeds
based on context features and classification results from the shape based
classifier trained according to the context features. The normalized
weed pressure of the test image was 0.2. Notice that both training
sets contains elements from both the weed and the crop classes. These
faults in the training set seems not to disturb the shape based classifier
significantly.

7.4.4 Adaptive feature based classifier

A classifier which can adopt to local variations in weed population and
plant growth stages can perform better than a globally trained classi-
fier. A constructed example of this is shown in figure 7.4. The figure
contains nine image segments and the segments should be concatenated
such that segment A is followed by segment B, segment C and so on.
The image contains a set of small rectangles that have different orien-
tations. Each rectangle represents a single plant and the orientation
of the rectangle corresponds to a shape feature derived from the plant.
Weed plants have a random orientation while the orientation of crop
plants is changing slowly. In addition crop plants are placed in a well
defined row structure with a fixed distance between neighbour plants.

When the whole field is examined the distribution of orientations for
crop and weeds will be identical, as weed orientations are drawn from a
uniform distribution covering a half rotation and the crop orientations
have gone through a half rotation. If the orientation is examined for
each segment the two distributions will be quite different, the crop
plants will now have a preferred orientation.

An adaptive classifier using the following training method were imple-
mented. The original image were divided into segments with a width
of 2000 pixels and for each segment the succeeding steps were taken.
Position scores (as defined in paper V) were calculated for all plants.
Plants with high position scores were used as training examples of crop
plants and the remaining plants were used as weed examples. A Naive
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7.5. Summary of localized shape based classification

Bayes classifier (described in chapter 3) using the orientation as input
were trained with these examples. The classifier were then used to rec-
ognize crop and weed plants in the next segment. The classification
results are shown in figure 7.4 on page 89 where crops are marked by
black and weeds by grey.

The test image contains 800 small rectangles of which 200 are crops
and the remaining are weeds. The confusion matrix of the adaptive
classifier is shown in table 7.2, the classification results from the first
segment are not included. The classifier recognizes both crop and weed
plants as crops, which is to be expected as some weed plants will point
in the same direction as the crops. What is more interesting is the
ability of the classifier to correctly recognize weeds. The accuracy of
the adaptive classifier is 70.20%, which is significantly higher than the
50% that can be expected from a globally trained classifier.

Crop Weed
Crop 148 191
Weed 6 316

Table 7.2: Confusion matrix for the adaptive classifier. Columns
describe the correct class while rows indicate the classification result.

7.5 Summary of localized shape based clas-
sification

Shape based features are often used to distinguish between crop and
weed plants. Use of a single training set is not optimal due to in–
field variations in plant appearance and growth stages. Features based
on context information are less sensitive to variations in plant shapes
and growth stages. When only context based information is used for
recognizing crop plants, the correct recognition rate is directly related
to the normalized weed pressure λ. When the normalized weed pressure
increases, the recognition rate will decrease.

The idea behind a context trained shape based classifier was presented.
Experiments showed that a shape based classifier can be trained from
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A
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F

G

H

I

Figure 7.4: Example of an adaptive classifier. Green indicates plants
that are recognized as crops while red indicates weeds. The plants in
one segment is used to train the feature based classifier used in the next
segment. Notice how accurately the adaptive classifier can detect weeds.
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7.5. Summary of localized shape based classification

an example image and knowledge about the crop row structure.

A method for training a local adaptive shape based classifier was de-
scribed. In the constructed example, the adaptive classifier performed
much better than possible of a globally trained classifier. A globally
trained classifier can only reach a classification accuracy of 50% on aver-
age and the adaptive classifier reached 70%. Although shape variations
of plants in a field is probably lower than in the constructed example,
an adaptive classifier can output perform a non–adaptive classifier most
of the time.
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Chapter 8. Discussion

Chapter 8

Discussion

The methods used for plant recognition and weed pressure estimation
in this dissertation take segmented images as input, where regions of
vegetation and background are clearly marked. There exists several
methods that can generate segmented images. Thresholding of colour
indices, like excess green and the normalized difference vegetation in-
dex, provides computationally cheap segmentations. The quality of
these segmentations depend strongly on the used image acquisition sy-
stem. Segmentation based on the Naive Bayes classifier is computation-
ally a more expensive process than thresholding methods. The benefit
is that the system can be trained to generate high quality segmentation
under many different conditions. For speeding up the process look up
tables (LUTs) is a possibility. This solution will work when the LUT
can be stored in random access memory (RAM). The size of a LUT
for segmenting RGB images with 8 bit information per colour channel
is 28·3 bits which equals 2 megabytes of memory. This can without
problems be stored in standard RAM. If either the number of bits for
each colour channel or the number of colour channels are increased, the
memory requirements would grow exponentially and make the LUT ap-
proach infeasible. Minor modifications of the image acquisition system
can, in some cases, simplify the segmentation task significantly. This
can be modifications of the illumination system and protection from
direct sun light. This is not an option under certain conditions and the
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need for robust and adaptable segmentation methods arise.

Information about weed pressure in strongly occluded scenes can be ex-
tracted by examining the relative position and orientation of edge pairs
in the scene. This process is implemented in the Modicovi algorithm.
One measure of the weed pressure is the percentage of pixels in an im-
age that contain weed plants, this is the weed pixel percentage. The
weed pressure is not described directly by the weed pixel percentage.
If the measure is combined with the number of vegetation in an image,
it is straightforward to calculate the number of weed pixels. Computer
generated test images were used for training and testing of Modicovi. It
is not optimal to train an algorithm like Modicovi on synthetic images,
but this approach was chosen due to the need of knowing the weed
pixel percentage for each of the training images. A significant correla-
tion between the actual weed pixel percentage and the estimated weed
pixel percentage was found. This correlation can be explained by two
mechanisms 1) that Modicovi has generalized the crop / weed concept
and based on this can generate good estimates or 2) that Modicovi
has learned some of the plant shapes in the training set. Based on the
low number of Gaussian features used to calculate the estimates, it is
unlikely that the system has learned all shapes in the training set. It
is more likely that the system has generalised the typical plant shapes
and thus can estimate the weed pixel percentage.

One approach for handling scenes with occlusions is to cut regions of
vegetation in the basic building blocks, leaves. The two methods for leaf
detection, described in chapter 5, are based on some basic assumptions
of how typical leaf shapes are formed. The curvature based leaf detector
will only detect leaves that have a mainly convex shape near the leaf tip
and are attached to the rest of the plant with a thin stem. Similarly will
the convex hull based leaf detector only find leaves which pop out from
the blob of vegetation that is being analysed. An assumption about how
a leaf is shaped is needed such that the computer knows what to search
for. The large variation in leaf shapes of different plants is difficult to
express in terms a computer can work with. The fractal structure of
carrot leaves do not follow the assumptions and the leaves will probably
not be detected reliably. A problem with the described leaf detectors
is that they can only detect leaves which is connected to the rest of the
plant in the segmented image. If a leaf is not connected, detection of
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Chapter 8. Discussion

the leaf stem fails and the leaf is discarded. Tuning of the segmentation
process is one way to reduce this leaf connectivity problem The best
possible input for the leaf detector are images where all leaves of one
plant are in the same blob of vegetation. If the segmentation process
breaks single plants into multiple blobs, the leaf detector is unable to
locate the free standing leaves, and information from them is therefore
lost in the following analysis.

The task of selectively applying a spray liquid to individual weed plants
was tested under lab conditions. In the small scale experiment the mi-
crosprayer performed satisfactory weed control of oilseed rape seedlings.
This was repeated in the large scale experiment although the system
failed to control around 10% of the plants. This is probably an issue
related to the vision system but it is difficult to confirm as input data
for the vision system was not logged during the experiment. When
a plant was located by the vision system the microsprayer hit it reli-
ably. This was observed for all the tested velocities. Velocities above
0.7 m/s was not investigated due to limitations in the test setup, but
the accuracy of the system is expected to decrease when the velocity is
increased. High amounts of motion blur in the captured images were
observed at the larger velocities. Operation at velocities above the
tested would probably require an upgrade of the illumination system,
such that motion blur in the images can be reduced. The process of
scaling up a microsprayer system from using a few nozzles to hundreds
or even thousands is bound to be problematic. Vibrations with ampli-
tudes larger than a few centimetres are often seen in farm machinery,
such vibrations will disturb the microsprayer system significantly. The
benefits of reduced herbicide usage and the possibility of using systemic
herbicides might outweigh the problems. In addition it is difficult to
control that the system performs as expected by the farmer. Treat-
ment with a microsprayer leaves almost no traces that can be observed
a few minutes after the treatment. Droplets of spray liquid are quickly
absorbed by the plants and it takes days before the growth inhibiting
effect of the herbicide can be observed. This is a problem for the initial
adoption as the farmer will only invest in a microsprayer system if he
believes that the system will work as expected.

Recognition of plant species based on shape information is a difficult
task, that usually requires a large set of training samples. The best
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recognition results are achieved when the training set is representative
of the field in which the plants grow. The approach of generating a
training set manually for each field is not feasible as generation of such a
training set would usually require a large amount of human interaction.
If the crop plants are placed in a recognisable structure a training set
can be generated or updated without human intervention. The quality
of the automatically generated training set depends strongly on the
number of mislabelled samples in the set. The probability of correctly
recognising a crop plant using information about the relative position of
nearby plants is limited by the normalized weed pressure. Low values of
the normalized weed pressure indicate that crop plants can be identified
with a high accuracy based on plant positions and knowledge of the
row structure. A context based classifier that is used to train a shape
based classifier is an example of an adaptive shape based classifier.
Adaptive classifiers can learn the local plant population and adjust to
local variations in crop plant appearances and weed population. This
flexibility lets adaptive classifiers perform better than similar shape
based classifiers that are trained with samples representative of the
whole field.
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Chapter 9

Conclusion

The goal of this thesis was to investigate methods for computer vi-
sion tracking of plants under field conditions. The information derived
from such computer vision systems can be used to control advanced
weed control methods which can control weed growth effectively while
reducing the environmental footprint of the weed control process sig-
nificantly.

The first step in the plant tracking systems developed in this thesis is
to distinguish between soil and vegetation. In the literature is this of-
ten handled by thresholding the Excess Green image or the Normalized
Difference Vegetation Index image which can be derived from RGB im-
ages and red–nearinfrared images respectively. Usually is this approach
adequate but under certain conditions, like hard shadows and colour
saturation, they will often produce wrongly segmented images. A seg-
mentation process based on the Naive Bayes classifier was described.
The segmentation process was tested under varying conditions and was
found to produce nearly flawless segmentations in all cases. The price
for the improved segmentation is that it requires a larger amount of
calculations than the segmentations based on thresholding. On some
types of input images this can be speed up using look up tables and
real time performance can then be reached.

A system for estimating the weed pressure in maize based on leaf shapes
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was devised. Existing systems for this task assumes that crop and weed
plants do not occlude each other, this assumption is seldom valid as crop
and weed plants fight for the limited resources in the field. The system
examines the vegetation image and locates plant contours. All edges
in the image are examined and the relative location and orientation
of nearby edges are calculated. The distribution of relative location
and orientation of nearby edges forms a fingerprint of the structures
present in the image. This fingerprint is invariant to rotations of the
entire image and are only weakly affected by occlusion between crop
and weed objects. By examining the fingerprint an estimate of the
weed pressure can be derived. The correlation coefficient between the
true weed pressure and the estimated weed pressure were 0.76. The
method relies on a limited set of image operations that are available
on a DSP platform, this allows a relatively easy porting of the method
from a standard computer to an embedded platform. The goal of the
system is to control a part of a sprayer boom such that the herbicide
application is adjusted to the weed presence.

A different strategy for handling occlusion in images is to split the oc-
cluded plant objects into parts which are not occluded by other plants.
For recognizing plant seedlings in occluded scenes it is obvious to ex-
amine individual leaves. Two methods for locating free standing leaves
were implemented. They were both able to locate more than 82% of
the well defined leaves in test images.

The shape of located leaves can be used to recognize the plant type. The
variation in plant shapes is a combination of variations in leaf shapes
and leaf positions. By analysing the shape of individual leaves, the
variations in plant shapes can be split into the two earlier mentioned
types of variations. As shape variations of individual leaves is less than
shape variations in the whole plant, it is expected to make classification
based on individual leaves more robust, but this was not investigated
directly.

Location and orientation of the located leaves can be used to estimate
the plant stem emerging point of sugar beet seedlings with a high ac-
curacy. A Gaussian model of the location of plant centres in the leaf
coordinate system was made. From information of a single detected
leaf the average error of estimated plant centres is 3.3 mm. When two
or more leaves are detected it is checked if their estimated plant centres
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coincide and if this is the case the plant centre models are combined to
get a better estimate of the plant centre. When observations from two
or more leaves are used to estimate the plant stem emerging point the
average error is less than 1.9 mm. Visual location of plants have thus
an average error which is an order of magnitude lower than comparable
GPS based systems.

A microsprayer system for controlling weeds at an early growth stage
were developed. The microsprayer consists of 6 nozzles placed side by
side covering distance of 6cm, each nozzle in the system can be activated
independently of the other nozzles. An area in front of the microsprayer
is monitored with a camera. When a green object gets into this region,
its shape is analysed and is is classified as either crop or weed. If the
shape is recognized as a weed, the spray system is activated when the
weed passes under the sprayer. In the first test of the system pots
with crop and weed models were moved below the microsprayer at a
velocity of 0.5 m/s. The system were able to distinguish between oilseed
rape and maize seedlings and activate the microsprayer at that velocity.
None of the maize seedlings were harmed while 94% of the oilseed rape
plants had their growth significantly reduced. A second test of the
system where the camera and microsprayer were dragged over a row
of weed models, this time the system were tested at velocities in the
range 0.25 m/s to 0.7 m/s. This time extensive data logging under the
experiment were performed such that the reason why specific plants
were not treated under the experiment could be examined afterwards.
Fresh weight of the plants three weeks after the treatment were used to
measure the effect of the treatment, the group of reference plants had
weights around 15 g to 20 g. The average fresh weight of treated plants
were 9.73 g when the system moved at 0.7 m/s. Only a part of these
plants activated the spray system, the average weight of the plants that
activated the sprayer were 0.71 g.

Plant shape is often used as the only input to plant recognition sys-
tems. When the task is to distinguish between crop and weed plants
a different type of information which is relevant for the classification
is present, this is the context information. If the plant is outside of
the row structure it must be a weed and if the plant follows the row
structure it is likely to be a crop plant. The crop recognition accu-
racy of context features depends on the normalized weed pressure, as
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the weed pressure increases the recognition accuracy decreases. The
benefit of context features are their stability. The distance between
neighbour crop plants are not affected by differences in soil conditions,
plant growth stages, access to water and similar that can affect the
shape of both crop and weed plants. Unfortunately context features
are insufficient to reach crop recognition rates above 95% under typical
field conditions. Shape based classification systems are often trained
on a set of images acquired from one field and tested on images from
a different field. If the two fields are not similar with respect to crop
types, weed population and growth stages of both crop and weed plants,
the classifier will not perform as well as possible. Training of a shape
based classifier requires labelled examples of both crop and weed plants,
these examples could be extracted from the images analysed in the ac-
tual field and labelled based on context information. Such a system
would be able to adapt to local variations in plant shapes.

Advanced methods for weed control rely on information about crop
placement, weed infestation levels and location of individual weed plants.
Methods that can extract this information from in field images are de-
scribed in this thesis. This shows that it is possible to derive a lot of
information about crop and weed plants using machine vision.

9.1 Future work

Future work will address some open ended questions that are not ad-
dressed in the dissertation. Focus during the Ph.D. were on developing
new algorithms for analysing images that can derive information about
position and type of the plants from the image. The next step is to
test the developed methods under field conditions.

Camera systems can acquire quality images containing many details of
plant seedlings. In a lot of systems this information is reduced to a
binary map of where vegetation is present in the image. This type of
data reduction is usually applied to simplify the following image analy-
sis. Weak edges caused by occlusion, colour and texture information is
often discarded in this segmentation process. With access to this infor-
mation it will be possible to create robust methods for plant recognition
in complex scenes. Extraction of leaves in occluded scenes could be im-
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proved by tracing weak edges in the original image, as described in
(Franz et al., 1995).

Plant recognition based on extracted leaves can either be performed on
the individual leaf level or on the group of leaves level. Classification
of individual leaves can be performed using known methods like active
shape models or shape feature descriptors. On the next level the task
is to classify groups of leaves that are likely to origin from the same
plant. Plant seedling models should take into account that cotyledons
and the first true leaves have different shapes. As long as individual leaf
detectors are unable to locate all leaves in an image, the models must
be robust to missing leaves. This approach is more like how humans
recognise plants.
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Abstract: In precision agriculture, an often used preprocessing stage1

in image analysis is to distinguish between living plant material and2

soil in images with several colour channels. The normalized differ-3

ence vegetation index and excess green are two cues that often is used4

in the segmentation process. A Bayesian method were described and5

used to segment images into regions containing vegetation or soil. The6

Bayesian method produces an improved segmentation than both nor-7

malized vegetation difference index and excess green. The improve-8

ment were sharper edges and less false positives.9

Keywords: statistics, Bayes, segmentation, crop, weed, discrimination,10

NDVI, EXG11
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1. Introduction12

A preprocessing stage used in many machine vision applications is segmentation13

of an input image into different regions based on their pixel content and context.14

Examples cover background detection[1], detection of moving objects[2], detection15

of traffic signs[3], . . . The problem of segmenting vegetation from background areas16

in agricultural images has been described by several scholars. Tian [4] made a17

segmentation based on a Naive Bayes assumption, in which he used chromaticities18

of the individual colours as the input data. They reported problems with changes in19

illumination.20

Woebbecke et al. [5] and Meyer et al. [6] examined several combinations of21

red, green and blue pixel values for distinguishing between vegetation and different22

background types. Excess green were effective at locating vegetation, but had a23

high rate of false positives. Excess red were good at recognizing some of these24

false positives. The combination of excess green and red were suitable for detecting25

vegetation.26

In this paper we investigate the problem of distinguishing between vegetation27

and soil based on input from separate colour channels and indices such as excess28

green [6] and the normalized difference vegetation index [7]. Information from the29

different sources are combined using a Naive Bayes approach adapted to work with30

continuous input values. To handle continuous input values the underlying proba-31

bility distribution for each input feature is estimated using kernel density estimation32

methods [8]. This approach to cue combination is not limited to segmentation of33

vegetation and could be applied to many segmentation problems.34

In addition to red, green and blue values, a near infrared colour channel was35

used. The nir channel is interesting in the context of vegetation segmentation as36

plant material tend to reflect a large fraction of near infrared light for keeping the37

plant temperature low. In this paper, we show that the nir channel can also be used38

in combination with other segmentation cues based on colour chromaticities. This39

combines the best from excess green classifiers which have a low error rate, but40

produces fuzzy edges and normalized difference vegetation index based classifiers41

which has sharp edges but falsely detects some soil regions as vegetation. Seg-42

mentations based on multiple cues are more robust to changes in vegetation cover43

(underlying prior values) and produces sharper boundaries between soil and vege-44

tation regions.45

This paper is structured as follows: Section 2 describes the used equipment and46

applied methods. Results are presented and discussed in section 3 and conclusion47

is presented in section 4. The used abbreviations and symbols are listed with brief48

explanations in table 1.49
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Table 1. Nomenclature

Symbol Unit Description
R, G, B, N 1 Red, green, blue and near infrared raw colour values
r, g, b, n 1 Red, green, blue and near infrared chromacities
ExG 1 Excess green
NDVI 1 Normalized differential vegetative index
S Soil class
V Vegetation class
C Object class, either S or V
P (C) 1 Background probability of class C
S(C) 1 Support for observation belonging to class C
Fk 1 kth feature value
k 1 Index variable
P (Fk|C) 1 Conditional probability distribution of feature Fk when

class is C
K(x) Smoothing kernel
f̂h(x) Estimate of probability density
h 1 Smoothing bandwidth
L 1 Number of observations used for estimating a probability

distribution

2. Materials and methods50

In this section, the steps involved in image acquisition, normalization, feature51

calculation, classifier training and testing are described. For training the classifier, a52

manual annotation process is used to generate labelled samples. Then these samples53

are used to estimate the underlying probability distributions.54

Image acquisition is described in section 2.1. Section 2.2 explains how the raw55

image sensor readings are converted to cues / input values for the classifier. Training56

of the classifier is covered in 2.4 and classifier prediction is described in 2.5.57

2.1. Data acquisition58

The image acquisition setup is shown in figure 1. Images were acquired with59

a JAI1 AD-080CL four colour channel 2–CCD camera. The camera captured im-60

ages with a resolution of 1024 × 768 pixels and each pixel consists of four colour61

values red, green, blue and near infrared (NIR). An example image is shown in fig-62

ure 2. Hard shadows were avoided by shielding sunlight from the imaged area and63

providing artificial illumination with LEDs. For the visual spectrum 30 Prolight2
64

Power LED PG1A-3LWS-SD were used while the near infrared illumination were65

1www.jai.com
2www.prolightopto.com
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Figure 1. Image acquisition setup.

Figure 2. Example image captured by imaging system

(a) RGB (b) Near Infrared (c) Annotated

delivered by 150 Vishay3 TSHG5510 830nm 180mW LEDs. Except the illumina-66

tion, the setup is similar to the light tunnel described in [9]. White balance was67

calibrated using a X-rite4 ColorChecker R© Classic[10]. The images were captured68

in Odense at the University of Southern Denmark the 19th of August 2010.69

2.2. Calculation of colour features70

The raw pixel values associated with the red, green, blue and near infrared colour71

channels (R, G, B and N respectively) consists of integers in the range [0; 212− 1].72

These values are not directly suitable as features for the classification problem as73

they are highly correlated to, e.g., changes in illumination. Raw colour values can74

be combined to new values, that are less sensitive to illumination changes but can75

be used to identify vegetation. Two examples are 1) Excessive green (ExG) [5] and76

2) Normalized Difference Vegetation Index (NDVI) [11] which are defined as:77

ExG = 2 ·G−R−B (1)

NDVI =
N −R
N +R

(2)

3www.vishay.com
4www.xrite.com
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The chromaticities (r, g, b and n) are given by the raw colour value divided by78

the sum of all the colour values.79

(r, g, b, n)T =
(R,G,B,N)T

R +G+B +N
(3)

2.3. Annotation of training images80

The training images were all annotated manually. The annotation process con-81

sisted of marking all pixels in the image that belonged to the vegetation class, the82

remaining part of the image were then handled as being soil. An example of an83

annotated image is shown in fig. 2.84

2.4. Classifier training85

We used the Flexible Naive Bayes classifier described by Perez et al.[12]. Train-
ing of the classifier consists of learning the probability density distributions of the
different input values conditional on the object class (soil or vegetation). The prob-
ability densities were determined from annotated images, see example in figure 2,
where soil and vegetation regions were marked manually. The four raw colour val-
ues, the corresponding chromaticities combined with ExG and NDVI were used as
input values for the classifier. To describe the probability density functions f̂h(x) of
the given input variables, kernel density estimation (KDE) was used with a Gaussian
kernel K(x), with bandwidth h [8].

f̂h(x) =
1

L · h
L∑

i=1

K

(
x− xi
h

)
(4)

K(x) =
1√
2π
e

−x2

2 (5)

Where L is the number of observations. The bandwidth was chosen manually.86

In principle could fh(x) be calculated for all new values of x using equation87

(4), but this would require linear time in the number of training samples. Instead88

the function value were calculated at 255 evenly distributed x values in the interval89

[xmin − 3h;xmax + 3h], where xmin / xmax is the minimum / maximum seen value of90

x in the training set.91

The estimated probability density functions are shown in figure 3. The prior92

probabilities P (S) and P (V) of a pixel being soil and vegetation respectively were93

also determined from the training set.94

2.5. Classifier prediction95

When the classifier is presented for a new observation, it is calculated how well96

the observation matches the soil (S) and vegetation (V) classes respectively. The97
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support for class C is denoted P (C, ~F ). The support is the approximated value of98

the probability density function given the observations and a test class that could99

either be soil or vegetation.100

P (C, ~F ) = P (C) · P (F1|C) · P (F2|F1,C) · P (F3|F1, F2,C) · . . . (6)

This representation requires a large amount of space O(d# features) and to get a101

usable accuracy an huge number of trainings samples is needed. By assuming in-102

dependent cues, the probability density function can be estimated by the expression103

below.104

P (C, ~F ) ' P (C) ·
10∏

k=1

P (Fk|C) (7)

the input features are named Fk where k ∈ {1, . . . 10}. This representation re-105

quires only O(d ·# features) space and only a fraction of the training samples. After106

the supports are calculated, the posterior probability that the current observation107

belongs to the vegetation class is given by:108

P (V|~F ) = P (V, ~F )
P (V, ~F ) + P (S, ~F )

(8)

3. Results and discussion109

In this section are results presented and commented. Section 3.1 covers train-110

ing of the classifier and what can be learned from the observed feature probability111

density distributions and prior probabilities. Correlation between cues are exam-112

ined in section 3.2. Section 3.3 investigates the performance of classifiers based on113

individual cues and all the cues combined.114

3.1. Training115

4 million annotated pixels in 5 images were used to estimate the probability dis-116

tributions for each of the 20 combinations of cues and classes5. The low number117

of images used for training could have been problematic if there were a large va-118

riety in the images. This was not the case due to the controlled illumination. The119

background probabilities were found to be P (V) = 0.0785 and P (S) = 0.9215) re-120

spectively. The input feature probability distributions are all shown in figure 3. The121

probability densities are scaled such that the plotting range covers the mean feature122

value ± 3 standard deviations. The percentage shown next to the probability distri-123

butions is the amount of overlap between the distributions. If two classes have equal124

5All combinations of 10 cues and 2 classes.
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prior probabilities, the overlap percentage divided by two is the upper bound on the125

expected error rate of the classifier that only uses the analysed input feature. Due126

to the large overlap (80.5%) the green chromaticity is expected to perform badly in127

the classification task. The two combined cues ExG and NDVI have a much lower128

overlaps (6.1% and 12.3%) and will thus produce better results.129

3.2. Correlation between cues130

The Naive Bayes classifier relies on the assumption that the input values / cues131

are independent. This is not the case in most applications, including the vegetation132

/ soil classification problem discussed in this paper. Hand and Yu [13] investigated133

how dependent input values changed the predictions of Naive Bayes classifiers. It134

was found that the classifier was more confident in decisions compared to inde-135

pendent inputs, but it still made similar classifications. The classifier was more136

confident in both correct and incorrect classifications than what is expected from137

the underlying probability density, which makes it more difficult to interpret the138

strength of the conducted classification.139

Figure 4 visualizes the correlation between the input cues. As can be seen the140

four raw colour values (R, G, B, N) are highly correlated. The four chromaticities141

are only weakly correlated and the cues NDVI, ExG and n are also correlated.142

3.3. Classification143

Eleven different classifiers were tested, one classifier for each of the ten cues and144

a single classifier using all the cues. Classification results of a test image are shown145

in figure 5 for the eleven classifiers. The four classifiers (B–E) that only used raw146

colour input values could identify the dark soil, but would also recognize dead plant147

material as vegetation. The classifier based on green chromaticities (G) produced148

unusable results as predicted from the large overlap in figure 3. Classifiers based149

on red, blue, nir chromaticities (F, H, I) performed better than classifiers based on150

the raw colour values. Edges of vegetation were much sharper but the classifiers151

had still trouble with soil and dead plant material being recognized as vegetation.152

The two classifiers based on ExG and NDVI (J, K) had a low rate of recognizing153

vegetation in regions containing soil and dead plant material, but the located regions154

of vegetation had blurred edges.155

Table 2 lists confusion matrices for the eleven classifiers using equal priors. The156

column names in the table consists of the true class (determined by annotation)157

followed by the predicted class. Notice how all classifiers using a single cues as158

input have a higher probability of classifying soil as vegetation, compared to the159

classifier using all cues as input. This is to be expected, as classifiers that rely on a160

single input cue and the priors will be more dependent on the priors, than a classifier161
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Figure 3. Visualization of probability densities. Two example input
images are shown in A and B. C–L contains the probability densities of
all the cues. The probabilities are shown for soil in red and vegetation in
green. The feature values are scaled such that the area below all curves
are identical. The shaded area is a measure of the separability of the
two classes and the overlap percentage is shown for each cue.

A: input B: input
26.7%
C: R

17.4%
D: G

27.3%
E: B

13.9%
F: N

16.1%
G: r

80.5%
H: g

14.3%
I: b

14.2%
J: n

6.1%
K: ExG

12.3%
L: NDVI

Figure 4. Correlation between the different cues. High correlation is
marked by bright squares and low correlation with dark squares.
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which uses input from several cues. The classifier using all ten cues performs much162

better than the other classifiers.163

Table 3 is similar to table 2, except the prior values were set to the values found164

in section 3.1. The first observation is that the green chromaticity g does not have165

enough strength to overcome the biased priors and the classifier will thus always166

classify new observations as soil. The performance boundary between classifiers167

using a single cue and multiple cues as input has narrowed down. The best per-168

forming classifier (according to the confusion matrices) is the one based on ExG,169

the classifier using all cues is only slightly worse. One thing is the number of mis-170

classified pixels in the test image, a more important aspect is the quality of the171

detected edges. Examples of the different classifiers in action is shown in figure 5172

and 6, the segmentation found using ExG has fuzzy edges while the classifiers using173

all cues produces much sharper edges and is in general much more confident about174

its choices.175

4. Conclusion176

A Naive Bayes classifier using continuous valued inputs was implemented. The177

classifier showed that several cues could be combined efficiently using this scheme178

and that the generated results of the combined classifier were equal to or superior to179

the results of the individual classifiers. Measured by the number of mistakes in the180

test image, ExG performed slightly better than the classifier using all cues as input.181

But the combined classifier were more confident in its classifications and produced182

much sharper edges.183
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Figure 5. Manually segmented image (A), vegetation probability calcu-
lated based on individual cues: raw colour values (B-E), chromaticities
(F-I), ExG (J) ands NDVI (G). Vegetation probability calculated using
all cues (L).

A: ref B: R C: G

D: B E: NIR F: r

G: g H: b I: nir

J: ExG K: NDVI L: P (V)

Table 2. Confusion matrices for the different classifiers using identical
priors

Classifier VegVeg VegSoil SoilVeg SoilSoil
R 8.22 0.51 11.07 80.20
G 8.48 0.24 9.62 81.65
B 7.55 1.18 9.88 81.39
N 8.60 0.13 6.75 84.52
r 8.49 0.24 5.83 85.44
g 4.96 3.77 33.24 58.03
b 8.40 0.33 5.91 85.36
n 8.48 0.25 5.79 85.48
ExG 8.71 0.02 4.39 86.88
NDVI 8.55 0.18 6.12 85.15
All 8.63 0.09 2.07 89.20
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Table 3. Confusion matrices for the different classifiers using priors
estimated from the training data.

Classifier VegVeg VegSoil SoilVeg SoilSoil
R 3.13 5.59 2.61 88.66
G 6.60 2.13 2.61 88.66
B 2.80 5.93 2.50 88.77
N 7.14 1.59 0.45 90.83
r 7.69 1.04 0.88 90.39
g 0.00 8.73 0.00 91.27
b 7.38 1.35 1.14 90.13
n 7.35 1.38 1.33 89.94
ExG 8.50 0.23 1.20 90.07
NDVI 7.83 0.89 1.29 89.99
All 8.60 0.13 1.43 89.84

Figure 6. Similar to figure 5 but on a different part of the image.

A: ref B: R C: G

D: B E: NIR F: r

G: g H: b I: nir

J: ExG K: NDVI L: P (V)
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1

Spray boom for selectively spraying a herbicidal composition onto 

dicots

FIELD OF THE INVENTION5

The present invention relates to a method and spray boom for discriminating cereal crop 

(monocot) and weeds (dicots) and relates particularly, but not exclusively, to an agricultural 

spray boom that incorporates such a spray boom. 

10

BACKGROUND OF THE INVENTION 

The most commonly used technique for broad acre spraying of pesticides is the use of a 

wide sprayer boom, which may be self-propelled or towed behind another vehicle. A typical 15
sprayer boom has a plurality of spray nozzles mounted at spaced locations along a boom, a 

large tank for containing the spray liquid and a pump system for pumping the liquid to the 

nozzles. 

One of the disadvantages of conventional sprayers is that herbicides are sprayed 20
indiscriminately on the crop, bare ground and weeds. This is of concern in the case of food 

crops, with consumer groups becoming increasingly vocal about chemical residue in crops 

and livestock. There is also an economic disincentive since a much greater volume of 

chemicals must be applied per hectare than is actually required to effectively control the 

weeds. 25

Today's conventional agricultural practise is to spray an average herbicide dosage one to 

several times within a cereal field with no regard to the spatial distribution of crop plants and 

weeds. Attempts have been made registering or mapping the weed distributions and then 

apply variable herbicide rates. This procedure has mainly been done manually and recently 30
in an automated and vision based manner. However the current algorithms discriminating 

the cereal crop (monocot) and weeds (dicots) fails in most cases due to leaf occlusions. 

Furthermore the present algorithms are computer intensive.
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Hence low cost real time discrimination is currently not possible. Furthermore, leaf occlusion 

between the single plants makes it very difficult to separate the single crop and weed plants, 

which prohibits any classic discrimination algorithms to be applied with success.

Current real time systems for crop and weed discrimination is mainly capable of operation 5
within crops seeded in rows. After identifying the extent of the crop rows the crop canopy 

free intra rows area is used to identify areas of living plant material which is then identified 

as weed. This approach is commercially operational today in real time. The main problem 

with the latter approach is the dependency of a crop free intra row strip. Within the majority 

of cereal crops, and especially within autumn sown winter cereals the intra row strip vanish 10
quickly during the tillering stages where multiple planophile cereal leaves enter the intrarow 

strip between the crop rows 125 mm apart. Hence the occurrence of overlapping or 

occluded crop and weed leaves makes it highly complex to discriminate cereals and 

dicotyledon weeds with the methods known today.

15
Lee et al (Precision Agriculture, 1, 95, 113, 1999) disclose a spray boom for selectively 

spraying a herbicidal composition onto dicots in a living vegetation. The spray boom 

comprises a plurality of spray nozzles evenly distributed along the spray boom 

(“valve/nozzle array”) and means for activating one or more of the spray nozzles in response 

to detected dicots so as to selectively apply the herbicidal composition onto the sensed area 20
containing the dicots. Moreover it comprises means for digitally recording an image of the 

selected area to be treated by a nozzle on the spray boom, whereby the plant material is 

identified based on a segmentation procedure that transform the raw image data of the 

image into a measure which describes the likeliness that a given pixel or point of the image 

is a living vegetation, such as leaves. Meanwhile, Lee at al do not disclose any means for 25
detecting dicots by estimating the curvature of the leaves by sampling locally distributed 

points placed on the edges of the leaves. Especially, Lee at al do not disclose any means 

for estimating the curvature measuring the orientation of the edge at points in a global 

coordinate frame. Importantly Lee at al do not provide any means for estimating the 

orientation of the leaves and how to extract and interpret relevant features.30

It is an object of the present invention to develop new technology with high environmental

impact for the agricultural market by reducing the amount of herbicide usage significantly.
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Particularly it is an object of the present invention to develop a novel vision based decision 

system for modified conventional sprayer booms, which is able to detect and apply 

herbicides on weed plants in real time with a capacity comparable to available sprayers.

It is a further object of the present invention to provide a spray boom that is able to quantify 5
the extent and ratio between cereal crop (monocot) and weeds (dicots), as well as occluded 

cereal crop (monocot) and weeds (dicots).

SUMMARY OF THE PRESENT INVENTION10

The present invention was developed with a view to providing a more efficient method and 

spray boom for discriminating different types of ground vegetation in agriculture, without the 

need to change hardware components of the spray boom every time a different type of plant 

is to be discriminated. 15

A unique feature of the present invention is automatic estimation of the ratio of weed leaf 

area relative to the total vegetation leaf area. The computation requirements are relatively 

low and can to a large extent be paralleled processed (e.g. by a FPGA, a DSP, or potentially 

a GPU unit) based on standard image processing primitives.20

Especially the present invention ensures a proper detection despite occluded leaves. Prior 

art methods mainly assume that the plants are clearly separated with no overlapping leaves.

So the invention will replace or supplement the algorithms currently used in matrix based 25
images to discriminate and quantify the ratio between cereal and dicotyledon weeds.

The invention utilizes the known difference in appearance between monocots (long narrow 

leaves) and dicots (shorter and roundish leaves). Despite overlapping leaves the method 

can be used in a robust and computer efficient manner to estimate the ratio between visible 30
monocot and dicot leaves. The feature that enables this is based on edge detection 

algorithms used for discriminating the elongated and roundish leaf shapes despite of 

occluded leaves.

The method and spray boom of the present invention utilize the following basic steps:35
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1) segmentation of an digitally recorded image in vegetation and soil regions;

2) detection of edges of identified leaves;

3) extraction of statistical features which describe the relative orientation and spatial 

properties of the detected edges; and

4) Interpretation of the statistical features resulting in a measure of the dicot cover.5

According to one aspect of the present invention there is provided a spray boom for 

selectively spraying a herbicidal composition onto dicots in a living vegetation, the spray 

boom comprising:

 means for digitally acquiring an image of a selected area to be treated by a nozzle on 10
the spray boom, whereby a plant material is identified based on a segmentation procedure 

that transforms the raw image data of the image into a measure which describes the 

likeliness that a given pixel is living vegetation, such as leaves;

 means for detecting dicots by estimating the curvature of the leaves by sampling locally 

distributed points placed on the edges of the leaves, said means for estimating the curvature15
measuring the orientation of the edge at  the points in a global coordinate frame;

 a plurality of spray nozzles evenly distributed along the spray boom;

 means for activating one or more of the spray nozzles in response to detected dicots so 

as to selectively apply the herbicidal composition onto the sensed area containing the 

dicots.20

According to another aspect there is provided a method for selectively spraying a herbicidal 

composition onto dicots in a living vegetation, said method comprising the following steps:

 segmentation of an image into points of a selected area of a field in living vegetation 

and non-vegetation regions;25
 detection of dicots by determining the curvature of the leaves through sampling 

locally distributed points placed on the edges of the leaves and measuring the 

orientation of the edge at  the points in a global coordinate frame and

 spraying the herbicidal composition to the selected area , wherein dicots have been 

detected.30

35
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BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an illustration of the spray boom.

Figure 2 shows estimations of Dicot ratio, compared to a known reference (Samples sorted 5
by reference ratio).

Figure 3 shows relation between reference and estimated dicot coverage optimized for 

lowest mean error.

10
Figure 4 shows distribution of residual errors of the estimated dicot coverage lowest mean 

error.

Figure 5 shows the relation between points on the edge.

15
Figure 6 shows the relation between points on the edge for a monocot compared to a dicot.

DETAILED DESCRIPTION OF THE INVENTION

20
In the following these steps are described in more detailed.

As shown in Figure 1 the spray boom has a set of digital cameras in a vision system that 

takes images of the field surface immediately in front of the spraying boom. The images are 

analysed for the occurrence of crop and weed. When one or more weeds are found in the 25
image, the information about their location is saved in a spray map. The image is normally 

divided into rectangular units (cells) of 200 mm in the driving direction and 250 mm 

orthogonally to the driving direction. Since the cameras are fixed in relation to the spraying 

boom, the cells are placed so that the nozzles – with a certain time lapse – pass over the 

middle of each cell. Under good light conditions the cell sprayer can operate with a forward 30
speed of approximately 3-4 m/s. Commercially available nozzles modified with high speed 

valves are used to control weeds. The overall conclusions were that it was possible to 

control weeds with an efficacy comparable to what is achieved with today’s broadcast 

spraying. 

35
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Although the invention will be described primarily with reference to the selective spot 

spraying of weeds, it will be apparent that the method and spray boom for discriminating 

different types of ground vegetation may also be used to identify weeds for mechanical 

destruction, mapping of weed infestation coupled with a global positioning system (GPS) or 

differential global positioning system (dGPS), differentiated spraying of liquid fertiliser on 5
crop plants, measurement and logging of crop vigour, and other weed and crop 

management practices.

In order to facilitate a more detailed understanding of the nature of the invention a preferred 

embodiment of a spray boom and method for discriminating different types of ground 10
vegetation will now be described in detail.

The method of the present invention involves the following steps:

1) segmentation of the image in living vegetation and non-vegetation regions;

2) detection of edges with orientation of the gradient at the individual pixels;15
3) Extraction of statistical features which describe the relative orientation and spatial 

properties of the detected edges; and

4) Interpretation of the statistical features resulting in a measure of the monocot/dicot ratio.

Below is each of the steps described more detailed.20

1. Segmentation

The segmentation serves to transform the raw image data into a measure which describes 

the likeliness that a given pixel is living vegetation. Within the domain there is primarily two 

ways which is typically used to accomplish this, one is normally referred to as Excessive 25
green, the other as the normalized difference vegetation index. 

Excessive green is defined as 2G – R – B where G defines the green part of the plant 

reflection, R the red part and B the blue part. It relies on the fact that the plant has a high 

absorption of blue and red light, but a low absorption of green. Normalized difference 30
vegetation index (NDVI) is normally defined as (NIR-Red)/(NIR+Red).

The method used is capable of mapping the raw images into a description where pixels with 

living plant material are separated from the rest. 

35
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The image is segmented so plant material and soil is clearly separated. Excessive green 

relies on the green peak seen at 550nm, where the normalised vegetation index relies on 

the high near infrared reflection (the use of the red channel is primarily a way of reducing 

false positives). 

5
2. Edge detection

After the image segmentation, the edges in the image are located. This can be performed 

using a filter bank consisting of Gabor kernels, with constant size and scale but different 

orientations, using a structure tensor or various other methods. For the Gabor method the 

edge image is constructed using the maximum response from the filter bank. This edge 10
image is thresholded and thinned until a single pixel wide edge remains. For each pixel still 

in the edge image, the orientation of the local edge is determined from the gabor responses.

By looking at which Gabor orientation yielded the maximum value for that edge point, the 

orientation of the Gabor kernel yielding the maximum response then directly corresponds to 

the orientation of the edge when combined with the sign of the imaginary part of the 15
response at the pixel.

For the edge detection the contour of the segmented objects is extracted. The contour 

description should contain both the spatial coordinates as well as the orientation of the 

edge, and on which side of the edge the segmented object is positioned. 20

The edge is extracted in order to be able to define some features based on the shape of the 

plant. In order to extract this information a filter bank consisting of Gabor filters is applied. 

Each of these filters is designed in such a way as to have maximum magnitude response, 

when the kernel is placed centre on an edge, with the orientation of the kernel matching that 25
of the edge.

In order to calculate the kernel of the Gabor filter, division into three parts is required; the 

propagating wave, the damping and the rotation of the kernel. The propagating wave simply 

relies on the definition of complex numbers which says that we can describe a complex 30
wave as an exponential as:

)sin()cos(  je j

35
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Applying this to the propagating wave of the Gabor it can described as:

)2sin()2cos( ''2 '

xfjxfe jxf  

5

Where f denotes the frequency, and denotes the position in the kernel given along the 

wave's direction of propagation. 

The dampning can be described as an exponential decay towards the edge of the kernel as 10

)( 2'22'2 yxe  

Where describes the sharpness of the Gaussian bell along the wave and  describes the 

sharpness of the Gaussian bell across the wave. still denotes the position in the kernel 

along the wave propagation and y´ denotes the position across the wave. 15

This allows the Gabor kernel to be expressed as:

jxfyx eeyxG  
'2'22'2 2)(),( 

20
x' and y’ can be defined by a rotation given by the angle  as:

)sin()cos('  yxx

)sin()cos('  xyy
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Where x, y defines the position in the kernel along the horizontal and vertical direction in the 

image.

5

For the Gabor filters there is a set of parameters which must be selected 

1. Frequency 

2. Sharpness / damping of Gaussian along and across the direction of propagation 

3. Amount of different angles (how large should the filter bank be) 10
4. Size of filter mask 

Each of these parameters is a compromise.

For selecting the frequency, the lower bound is defined by how small blobs should be 

detected; if the frequency is too low, it will not be able to detect the smaller weed blobs. If 15
the frequency is too high we will have an increased sensitivity to noise. As the images the 

Gabor filter is working on is near binary, the edge can considered a Heavyside step function, 

therefore energy will be present at all frequencies. Since the blobs of the weed is sometimes 

fairly small (down to 4 pixels across a leaf) in the test dataset, a high frequency of f = 0.4

has been chosen (normalized frequency (cycles per pixel)).20

Sharpness of the filter along the wave propagation should ensure that the sampling of the 

edge is localized and as we do not wish to be extra sensitive to texture only a single period 

should be contained within the Gaussian bell, the sharpness has been set to 8.0 , which 

results in that more than 99% of the contribution comes from the pixels which lies in a 25
distance of less than or equal to 2 pixels away from the pixel being measured. Across the 

direction of propagation the sharpness defines how many of the neighbouring pixels aid in 

the definition of the orientation of the edge. If the bell is to narrow then the angle will be 

noisy, if it is too large it will be insensitive to sharp curves, we have chosen a sharpness of 

. 30

The amount of different angles is another compromise primarily between computational 

efficiency and the angular resolution, as computational efficiency is not a parameter for this 

project no further time has been spend on optimizing this parameter, and tests has been 

performed using 8 Gabor filters which equals a resolution of .35
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A core feature of the present invention is the detection of dicots by estimating the curvature 

of the leaves by sampling locally distributed points placed on the edges of the leaves, and 

measuring the orientation of the edge at  the points in a global coordinate frame;

5
By measuring the orientation of the edge at a local point in a global coordinate frame, a 

description of each edge point can be obtained, if each point is combined along the edge 

with the other points on the edge as shown in Figure 5. The relation of each combination of 

two edge points can be described. Using this description on all points which is a distance

less than a maximum distance (e.g. 125 pixels), a set of fingerprints can be created for an10
image based on a histogram of the description. From these fingerprints the density of a set 

of strategically chosen areas is measured. From these measurements an evaluation can be 

performed to estimate the amount of leaf coverage. For this work the estimation was 

performed by performing a non-linear regression on a known reference using a genetic 

algorithm.15

3. Feature extraction 

To describe the shapes in the image, the relative location and orientation of pairs of edge 

pixels are examined. The relative measures are used in order to obtain spatial and rotational 

independence. The relative location of two edge pixels is described using the parameters: x, 20
y and \theta. By looking at all pairs of edge pixels with an internal distance lower than a 

given threshold (e.g. 125 pixels), the distribution of the three parameters x, y and  can be 

investigated using 2D histograms. These histograms are the “fingerprints” of the examined 

structure represented in a rotation and position invariant way.

25
4. Interpretation

The statistical features can be visualized as a kind of “fingerprint” image. Three such 

fingerprints are shown in figure 6, one for pure monocots, pure dicots and finally a mixture of 

the two plant types

30
Mixture (nightshade and maize)

Based on the illustrated fingerprints and variation of these it is possible to quantify the 

amount and ratio between monocotyledons (cereal crops and grass weed) and dicotyledons 

(weeds) in a computational efficient manner. For interpreting the fingerprints a set of 9 

features has been created, each of these features is a subset of the points selected to 35
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approximate a given property of the plant. A feature is defined as a measure of the points 

density within a given area of the fingerprint. Even though some of the properties is not 

always approximated closely, in some cases the features has been kept as they have 

shown a strong correlation to the weed coverage. The 9 features are 

● Straightness - describes the straightness of the plant5
● Mean distance

● Width consistency

● Colinearity

● Colinearity 2. attempt

● Energy at 90 degrees10
● Energy at 90 degrees measured at a distance of 50 pixels

● Energy at 90 degrees measured at a distance of 90 pixels

● Rotational variance

The initial results based simulations using 1000 artificial images with varying densities of 15
maize (monocot) and weeds (dicots) is illustrated below. The results has been obtained 

using the data estimation tool Eureqa, made by Cornell University, which uses a Genetic 

Algorithm to find the equation which best describes a point cloud. When optimizing for the 

lowest mean error this results in a mean error of 0.54% and an maximum error of 41%. 

When optimizing for lowest maximum error, the mean error is 7.8% with a maximum error of 20
24.8%.

Referring to Figure 2 there is shown 1000 test images with changing weed densities were 

analyzed with Modivoci. The figure show the relation between the actual weed density and 

the estimated weed density.25

All samples were ordered according to the actual weed density (plotted as the thick black 

line). For all samples were the estimated weed density shown as black circles. The figure 

proves that the estimated weed pressure provided by Modicovi is strongly correlated to the 

actual weed pressure.30

Referring to Figure 3 the correlation between the actual weed pressure and the predicted 

weed pressure is shown. The samples used for training the estimator are marked with 

circles and the test samples are marked with solid dots.

35
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CLAIMS

1. A spray boom for selectively spraying a herbicidal composition onto dicots in a living 

vegetation, the spray boom comprising:

 means for digitally recording an image of a selected area to be treated by a nozzle on 5
the spray boom, whereby a plant material is identified based on a segmentation procedure 

that transforms the raw image data of the image into a measure which describes the 

likeliness that a given pixel or point of the image is living vegetation, such as leaves;

 means for detecting dicots by estimating the curvature of the leaves by sampling locally 

distributed points placed on the edges of the leaves, said means for estimating the curvature10
measuring the orientation of the edge at  the points in a global coordinate frame;

 a plurality of spray nozzles evenly distributed along the spray boom;

 means for activating one or more of the spray nozzles in response to detected dicots so 

as to selectively apply the herbicidal composition onto the sensed area containing the 

dicots.15

2. A spray boom according to claim 1, wherein the selected area to be treated is less 250 

mm x 200 mm.

3. A spray boom according to claim 1 or 2, wherein the measure which describes the 20
likeliness that a given pixel is living vegetation is based on thresholding Excessive Green 

(2xGreen – Red – Blue) or NDVI ((NIR-Red)/(NIR+Red).

4. A method for selectively spraying a herbicidal composition onto dicots in a living 

vegetation, said method comprising the following steps:25
 segmentation of an image into points of a selected area of a field in living vegetation 

and non-vegetation regions;

 detection of dicots by determining the curvature of the leaves through sampling 

locally distributed points placed on the edges of the leaves and measuring the 

orientation of the edge at  the points in a global coordinate frame; and30
 spraying the herbicidal composition to the selected area , wherein dicots have been 

detected.



14

ABSTRACT

There is provided a method and spray boom for discriminating cereal crop (monocot) and 

weeds (dicots). The spray boom includes means for digitally recording an image of a 

selected area to be treated by a nozzle on the spray boom, whereby a plant material is 

identified based on a segmentation procedure; and means for detecting the edges and 

estimating the angles of the edges of the leaves so as to discriminate between dicots and 

monocots; and means for activating one or more of the spray nozzles in response to 

detected dicots so as to selectively apply the herbicidal composition onto the sensed area 

containing the dicots.
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Successful intra-row mechanical weed control of sugar beet (beta vulgaris) in early growth

stages requires precise knowledge about location of crop plants. A computer vision system

for locating plant stem emerging point (PSEP) of sugar beet in early growth stages was

developed and tested. The system is based on detection of individual leaves; each leaf

location is then described by centre of mass and petiole location. After leaf detection were

the true PSEP locations annotated manually and a multivariate normal distribution model

of the PSEP relative to the located leaf was built. From testing the system, PSEP estimates

based on a single leaf have an average error of w3 mm. When several leaves are detected

the average error decreases to less than 2 mm.

ª 2011 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical inter-row weeding between crop rows has been

used for a long time. However, mechanical intra-row weeding

within rows between the single crop plants is relatively new.

Physical intra-row methods can, in general, rely on three

different strategies (Griepentrog & Dedousis, 2010: chap. 11):

(1) soil coverage of weeds or (2) weed root/stem cutting or

(3) uprooting of weeds (whole plant or partly). The first option

is only relevant in some crop types such as cereals and pota-

toes. Sugar beet (beta vulgaris) at dicotyledon stage does not

belong to these groups (Kouwenhoven, 1997; Melander, 2000)

and only strategy (2) and (3) may be used.

Several intra-rowmechanical weedmanagement methods

need to know where the crop plants are located, especially

with concern to the plant stem emerging point (PSEP) which is

defined as the point where the plant stem emerges from the

soil surface. Computer vision was used by Tillett, Hague,

Grundy, and Dedousis (2008) to locate transplanted cauli-

flower plants, before a cultivation disc was used so that the

crop plants were not harmed. RTK-GPS has been used to mark

the position of crop seeds during sowing (Griepentrog,

Nørremark, Nielsen, & Blackmore, 2005), but the PSEP is not

identical to the planted seed position, as the orientation of the

seed is not taken into account. Nørremark, Griepentrog,

Nielsen, and Søgaard (2008) used RTK-GPS coordinates to

control a cycloid hoe doing intra-row weed control based on

seed positions. Uncertainty in seed orientation, PSEP, and GPS

accuracy limited the achievable precision to approx 30 mm.

Sun et al. (2010) used RTK-GPS for mapping transplanted

tomatoes; 95% of the plants were within 51 mm from the true

plant position. Based on vision input crop plant positions may

be determined with a higher accuracy and precision as

Åstrand and Baerveldt (2002) indicated by guiding an auton-

omous weed robot with 20 mm accuracy along crop rows.

Earlier work on extraction of individual leaves from images

included that of Franz, Gebhardt, and Unklesbay (1991) which

analysed boundary curvature by comparing with a known leaf

shape and Neto, Meyer, and Jones (2006) which detected

individual leaves in complex scenes based on

* Corresponding author. Tel.: þ45 21356105.
E-mail address: hemi@kbm.sdu.dk (H.S. Midtiby).

Available online at www.sciencedirect.com
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GustafsoneKessel clustering. This paper describes and eval-

uates a vision based method which detects single crop leaves

and predicts where the corresponding PSEP is located.

2. Materials and methods

The current work consists of three parts: (1) development of

a leaf detector, (2) building of a relative PSEP model, and

(3) using the relative PSEP model to predict true PSEP based on

detected leaves. Anexample image of sugar beet plants in early

growth stages is shown in Fig. 1. The leaves can be described as

convexobjectswitha thinstem(petiole). Leavesaredetectedby

locating convex regions of the plant contour. The relative PSEP

model is generated by comparing manually marked PSEP

locations (i.e. ground truth values) with the detected leaves.

Based on the relative PSEP locationmodel and detected leaves,

estimatesof thetruePSEP locationsareobtainedautomatically.

Finally, themethods for evaluating performance are described.

2.1. Image acquisition and segmentation

Images from sugar beet fields were acquired using a bi-

spectral line scanning camera mounted on the Robovator

(Poulsen, 2010) intra-row mechanical weeding robot. The

setup for image capturing is shown in Fig. 2. The imaged sugar

beet plants were part of field emergence trials conducted by

Maribo Seed, Højbygårdvej 31, 4960 Holeby, Denmark in 2009.

Precise plant placement is not required for field emergence

trials which can be seen directly in the acquired imageswhere

sugar beet plants are distributed randomly over the captured

region. The plants were in growth stages BBCH10-14. The

captured area was illuminated with two 55 W halogen lamps.

Each line in the acquired image consists of 256 pixels and

a typical data file consisted of approximately 13,000 scan lines.

A single pixel measured approximately 1.1 mm� 1.1 mm.

A sample image can be seen in Fig. 1. For each pixel both a red

and a near infrared value were available. Combining red and

near infrared values makes it possible to segment images into

plant material and soil which was done by calculating the

normalised difference vegetation index (NDVI) value for each

pixel (Backes & Jacobi, 2006). After this operation a single

channel imagewas obtainedwith plantmaterial having a high

NDVI value compared to soil. This image is segmented using

a threshold of 0.2 to form a binary image, the threshold was

found by trial and error. These binary images are the basis for

the data material used in this paper. Before further analysis

the connected components are located. It was assumed that

a leaf will only contribute to one connected blob. To remove

noise, only blobs with areas larger than 160 pixels were kept.

2.2. Leaf extraction

For detecting leaves the general leaf structure was exploited.

Examples of leaf shapes are shown in Fig. 1. The structure

consistedofa largemainlyconvex regionattachedto the restof

the plant via a thin stem (petiole) (Meier, 2001). The leaf

extractionmethodworks in two steps. First convex regions are

located and marked as leaf tip candidates; this is described in

Symbols and description

S
/

Petiole location, mm

C
/

Leaf centre of mass, mm

z
/

k List of boundary coordinates, mm

k Index variable

D Smoothing length

l Temporary distance threshold, mm

x
/

lc Average PSEP location in plant frame, mm

S1c Covariance matrix of PSEP location in plant

frame, mm2

c2
2;a Chi square distribution with two degrees of

freedom at the level 1 - a

x,y Coordinate in plant frame, mm

PAðx/ Þ;PBðx/ Þ; PCðx/ Þ Probability distribution of PSEP

location in global frame, mm�2

x
/ A

c ; x
/ B

c ; x
/ C

c Average PSEP location in global frame, mm

SA;SB;SC Covariance of PSEP location in global frame,

mm2

D1, ., D6 Sets of PSEP estimates produced by different

methods

Abbreviations

MR Missed root

BBCH Growth stage classification scheme by

Biologische Bundesanstalt, Bundessortenamt

and chemical industry

FP False positive

PSEP Plant stem emerging point

RTK-GPS Real time kinematics GPS

GPS Global positioning system

NDVI Normalised difference vegetation index

Fig. 1 e Plant segmentation was done in two steps. First were NDVI values calculated for each pixel, then was the image

thresholded. The shown images are (a) pseudo RGB image of raw data (red is shown as red and NIR is shown as green while

the blue channel is set to zero) (b) NDVI image before thresholding and (c) after thresholding.
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Section 2.3. From the located leaf tip candidate a search for the

corresponding petiole is then initiated, the search process is

described in Section 2.4. If a petiole was located a leaf was

found. When a leaf was detected the leaf location and orien-

tation was described by petiole location S
/

and the leaf centre

of mass C
/

.

2.3. Leaf tip candidate location

Leaf tip candidates were found at local curvature minima in

curvature of the plant boundary. At this stage the plant

boundary was specified as the list of coordinates z
/

k where

k˛ [1,.,n] and the boundary was followed in a clockwise

direction. The curvature was then defined as the angle

between the line connecting point keD and k and the line

connecting point k and kþD. The sign of the direction change

indicated whether the current location of the boundary was

concave or convex. The parameter D¼ 12 was used together

with a running average of the five nearest points. Plant

boundary and curvature along the boundary was visualised

in Fig. 3. Local maxima corresponds to concave regions,

which were often located at leaf intersections or near the

sugar beet growth point, which was assumed to be vertically

above PSEP where several leaves are connected to a common

area. Local minima corresponded to convex regions such as

leaf tips.

To locate a candidate single leaf tip for each leaf, the

following steps were used: (1) division of the boundary into

concave and convex regions, (2) location of the minima in

each convex region and (3) thresholding of the located

minima. The purpose of the first step was to split the

boundary into segments that at most contained a single

leaf tip. Splitting points were used as locations where the

curvature changes from positive to negative or from nega-

tive to positive values. The second step found the most

likely leaf tip location, which were the points along the

boundary where the boundary was convex and the change

of direction was maximised. Step three removed possible

leaf tip locations according to change of direction, if the

change of direction was too small (i.e. less than 1 radians)

the candidate was eliminated.

2.4. Location of corresponding petiole

From each of the candidate leaf tips a search for the corre-

sponding petiole was then initiated. Two walkers were placed

at the leaf tip with the goal of following the boundary in each

direction, one clockwise and one counter-clockwise. The

movement of the walkers was controlled such that they

reached the petiole nearly simultaneously. Each walker was

then moved forward until the next step along the boundary

brought theEuclideandistancebetween thewalkerandthe leaf

tip point above the specified threshold distance l. The distance

between thewalkerswas thenmeasured. This process (walker

movement and distance measurement) was repeated with

increasing values of l. In Fig. 4 the search strategy is visualised.

For each value of the distance threshold the corresponding

circle was drawn together with the two walker locations.

To locate the petiole, the distance between thewalkerswas

investigated as follows: (1) search for a narrow leaf region

which initiated the region in which the petiole could be

located followed by (2) a search for a broadening of the leaf

width which ends the region in which the petiole could be

found. This strategy was implemented as a state machine.

The state machine started in the leaf tip state and remained

Fig. 3 e Example of plant boundary and the calculated

curvature along the boundary. The boundary is followed

clockwise. Leaf tips are local minima and locations near

the PSEP corresponds to peaks.

Fig. 2 e The camera unit consisted of camera combined

with halogen lamp. During image acquisition were eight

such units mounted in front of a tractor.

Fig. 4 e Visualisation of the search strategy. The boundary

was followed from the leaf tip until the Euclidean distance

between the current location and the leaf tip exceeded

a specified threshold. This was done in both directions and

distance between the located points was measured. The

procedure was repeated with increasing distance

thresholds illustrated by concentric circles. When the

distance between located points was minimised the leaf

cut-off location was found.
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there until the distance between the two walkers got below

half of the maximum distance between the walkers. At this

point the state was changed to the leafestem state. In the

leafestem state the system kept a track of the minimum

distance between the walkers and corresponding walker

locations. When the distance between the walkers exceeded

three times the minimum distance observed in the leafestem

state the search was terminated. The leaf boundary cut-off

positions were given by the location of the walkers where

the distance between the walkers was minimised within the

leafestate. The petiole location was set to the midpoint of the

two boundary cut-off positions. To avoid infinite loops the

petiole search was terminated if one of the walkers reached

a leaf tip candidate or the two walkers passed each other.

2.5. Manual marking of root/leaf relative locations

After the automatic extraction of plant leaves, as described in

Section 2.2, real PSEP locations were marked manually.

A program showed each plant and the user then marked the

pixel nearest the true PSEP. Fig. 5 illustrates a sample image

with PSEPsmarkedwith red spots and detected leavesmarked

by orange. To describe themarked PSEP location relative to the

extracted leaf, the leaf coordinate system is placed with origin

located at the petiole S
/

and direction of the x axis parallel to

the vector C
/

�S
/

. An example is shown in Fig. 6.

The manual annotation of the location of the true PSEP

locationswas prone to errors. PSEP locationsweremarkedwith

asinglepixel, so theaveragequantisationerrorwill bew0.5 mm

along each dimension. The true PSEP locations marked by an

operator will also have an uncertainty. To estimate size of the

typical error in this process the same image was annotated by

two persons. Differences in PSEP locationswere calculated and

mean distance between annotations was determined.

2.6. PSEP location model

A multivariate normal distribution was used to model the

PSEP location within the leaf coordinate system. The model

was defined as:

pðx/ Þ ¼ 1
2pjSlcjexp

��1
2
ðx/ � x

/

lcÞT
X�1

lc
ðx/ � x

/

lcÞ
�

(1)

where x
/

lc is the centre of the true PSEP estimate and
P

lc is the

covariance matrix. Both x
/

lc and
P

lc are expressed in the leaf

coordinate system. Ellipses were used to visualise the multi-

variate normal distribution, contours of certain values are

drawn such that a given fraction of the probability is inside the

ellipses. To calculate the ellipses the formula below is used:

ðx/ � x
/

lcÞT
X�1

lc
ðx/ � x

/

lcÞ ¼ c2
2;a (2)

where c2
2;a is the c2 distribution with 2 degrees of freedom and

P value 1� a. Typical fractions used for visualisation are 68%,

95% and 99.7%. As the PSEP is defined relative to the leaf (Fig. 6)

the x and y coordinate values were translated to a displace-

ment along the major leaf axis and displacement perpendic-

ular to the same axis respectively. The PSEP was expected to

lie in extension of the primary leaf axis (low y values) shifted

to negative x values. For later analysis position and uncer-

tainty parameters were converted to the global coordinate

system using a coordinate transformation based on rotation

and translation.

2.7. Combination of relative PSEP location models

In many cases it is possible to detect more than a single leaf,

an example is shown in Fig. 7. In the figure 99.7% ellipses of

the two estimates of the true PSEP share a common region and

it could be expected that the true PSEP was located within this

region. To combine two PSEP models ðpAðx/ Þ and pBðx/ ÞÞ the

probability densities are multiplied and normalised.

pcðx/ ÞfpAðx/ Þ$pAðx/ Þ (3)

If the PSEP models are defined by the parameters
P

A,
P

B, x
/ A

c

and x
/ B

c the parameters of the combined model expressed as

(Gales & Airey, 2006)

X�1

C
¼

X�1

A
þ
X�1

B
(4)

x
/ C

c ¼
X

C

�X�1

A
x
/ A

c þ
X�1

B
x
/ B

c

�
(5)

This combination of PSEP models was based on the same

principle as least squares estimation used in the Kalman filter.

2.8. Generation of position predictions

To test the developedmethod for PSEP estimation, themethod

was applied to a test image. True plant locations were deter-

mined manually and compared to six sets D1,.,6 of predicted

PSEP locations. These sets were used to measure accuracy of

Fig. 5 e Manually marking of PSEPs. The orange leaves

were detected by the leaf detector. PSEPs are marked with

red spots.

Fig. 6 e PSEP location as specified in the leaf coordinate

system. Where the centre of mass is C, stem attach point S

and PSEP location R. The PSEP location model is indicated

by the three concentric ellipses. According to the PSEP

location model, 68% of the true PSEP locations will be

placed within the central ellipse, the two other ellipses will

contain 95% and 99.7% respectively.
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the located PSEPs under different conditions, eg. different

number of detected leaves per plant.

From all the detected leaves a PSEP were generated (using

only information from this leaf). This was a set D1. D2 con-

taining PSEPs calculated from two detected leaves. All possible

combinations were tested and leaf pairs were combined if

distance between centres of their PSEP models was less than

20 mm. D3 and D4 were similar to D2 except that 3 and 4 leaves

are used for calculating the PSEP. For a plant where n leaves

were detected, the set Dk would contain ð k
n
Þ elements related

to that plant. Not all plants had all four leaves detected,

therefore they did not contain PSEPs associated to these

plants. Thus the number of leaves used to calculate PSEPs

increased, the precision of the located PSEPs increased, but

a larger fraction was missed. D5 was a compromise between

large coverage and low placement error. The set was built on

D1 bymerging PSEPmodels with a distance between predicted

plant centres of 20 mm or less. This merging scheme gener-

ated combined PSEP models based on position information

from up to 4 leaves. In addition was a set, D6, generated by

manual annotation by a different person than the one who

marked the reference PSEPs. D6 covered only one third of the

test image and was used to estimate the uncertainty of the

manually marked PSEPs.

2.9. Performance evaluation

Performance of the PSEP location models was judged accord-

ing to the following values:

False positives (FPs): If a leaf was falsely found by the leaf

separator method it constituted a FP. These cases were char-

acterised by having a long distance from the predicted PSEP to

the nearest true PSEP. FPs were detected by setting a threshold

on the allowed distance from predicted leaf location to the

nearest true PSEP.

Missed PSEP locations: If none of a plant’s leaves were

detected a PSEP was missed. It was characterised by having

a long distance from the true PSEP to the nearest predicted

PSEP. Missed PSEPs were detected by setting a threshold on

the allowed distance.

Predicted position error: The errors in the predicted PSEP

locationwere averaged for all predicted PSEP locationswith an

error less than a threshold of 20 mm.

3. Results

3.1. Leaf detector performance

For evaluating performance of the leaf detector, the 805 leaves

present in the test images were counted manually. The leaf

detector located 46.6% (395) leaves, of those 2.4% (19) were FPs.

3.2. Relative PSEP model

The leaf detector was applied to three datasets. True PSEPs

weremarked by hand in all three datasets. Additionally leaves

were detected by the leaf detector method and their location

specific information recorded. Analysing leaves and PSEPs led

to the generation of 223 data points. In the local leaf coordi-

nate system the multivariate normal distribution model was

described by the parameter values:

x
/

lc ¼
�
5:40
0:24

�
mm

X
lc

¼
�
12:65 1:28
1:28 2:35

�
mm2 (6)

Fig. 7 e Combination of two PSEP location models. The

ellipses are similar to those shown in Fig. 6. For the raw

models the ellipses for 99.7% are shown and for the

combined model 68%, 95% and 99.7%, respectively.

Fig. 8 e Fraction of missed PSEPs as a function of the

threshold distance. When the number of leaves used to

estimate true PSEPs was increased, the fraction of missed

PSEPs also increased. The following colour coding is used:

D1: dashed green line, D2: dashed dark orange line, D3:

dotted blue line, D4: dotted pink line, D5: green line and D6:

orange line.
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3.3. Fraction of PSEP locations found

The fraction of missed PSEPs was visualised as a function of

the chosen threshold in Fig. 8. All six PSEP predictionmethods

showed the same trend. At first the fraction of missed PSEPs

decreased linearly until the curve flattened out. The point

where the curve flattened out indicated the maximum error

of the position estimate and the fraction of PSEPs that were

not found. Note that humans were good at locating a large

fraction of the PSEPs. The fraction of roots not found within

20 mm is shown in the missed root (MR) column in Table 1. If

a single leaf (D1) was used to predict PSEPs, approximately

10% of the true PSEPs were missed, this number increased

strongly when the number of leaves used in the prediction

was increased. Approximately 37% of the true PSEPs were

missed with estimates based on two leaves and this number

increased to w89% when four leaves were used to generate

estimates. This increase in the fraction of missed PSEPs was

only to be expected, as the plants with one or two detected

leaves were not present in D3 and D4.

3.4. Fraction of FPs

To gain insight in the accuracy of PSEP location estimates the

fraction of FPs was visualised as a function of threshold

distance in Fig. 9. The figure was divided into four regions,

each representing a dataset. Dataset One is the PSEP near

which the leaf detector found a single leaf; Three is when the

leaf detector located three leaves. From the green curve it is

seen that w20% of the D1 position estimates had a distance

(error)> 4 mm to the nearest true PSEP, for comparison the

corresponding distance for D2 was 3 mm. The figure shows

that when the number of leaves used to generate a PSEP

location estimate was increased the error in the estimate was

reduced significantly. The figure was divided into four

underlying datasets such that each dataset could be weighted

appropriately. If all the data was shown in one plot it would

have been difficult to interpret because each set of location

estimates was based on a unique dataset. The number of FPs

and MRs for each of the estimate sets is given in Table 1. The

listed values were found using a threshold distance of 20 mm.

In addition the estimate error (distance from estimate to

nearest PSEP) was described using the average value and the

95% quantile (i.e. 95% of the predicted PSEP had an error of less

than that value).

Table 1 e Performance statistics of the PSEP estimates.
Count; number of position estimates. FP; false positives,
percentage of predicted plant positions with a distance to
the nearest true plant location larger than 20 mm. MR;
missed roots, percentage of true PSEPs within 20 mm of
a predicted PSEP location. Avg; average estimate error in
mm. 95%; the 95% quantile of estimate errors in mm.

Set Number
of leaves

Count FP MR Avg 95%

D1 1 395 4.8%(19) 10.0% 3.29� 0.14 15.76

D2 2 313 1.6%(5) 37.3% 1.88� 0.07 4.62

D3 3 132 0.8%(1) 70.1% 1.42� 0.09 3.02

D4 4 29 0.0%(0) 89.1% 1.22� 0.20 2.39

D5 1e4 188 8.0%(15) 10.4% 2.66� 0.21 49.51

D6 na 71 0.0%(0) 2.7% 1.37� 0.26 3.58

Fig. 9 e Fraction of false positives as a function of the threshold distance. Error of PSEP location estimates was seen to

decrease when the number of leaves used to make the estimate increased. Colour codings as in Fig. 8.
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4. Discussion

The leaf detector was not able to locate all leaves in the test

images. This was due to overlapping leaves, leaves with

irregular shapes and, to a certain extent, limitations in the

implemented algorithm. Some typical cases are shown in

Fig. 10. The petiole search was fragile and failed if more than

a single leaf tip candidatewas found inone leaf. In theused leaf

definition (convex area with a thin petiole) overlapping leaves

could have influenced both criteria: the combined leaf area

was not guaranteed to be convex and the petiole region could

have been hidden or widened. Rarely will the relative location

of leaf tip estimate and petiole cause the petiole search

strategy to fail; this is the case when the distance between

petiole and leaf tip estimate is less than the distance between

leaf tip estimate and the true leaf tip. To reduce the fraction of

missed PSEPs the leaf detector must be improved. If a PSEP is

not located none of the associated leaves have been detected.

Before evaluation of the implemented algorithms the uncer-

tainty of the true PSEP position should be investigated. This can

be achieved by comparing true PSEPs with PSEPs determined by

a person different from the one who determined the true PSEPs

initially. The difference between such two manual annotations

can be used as an estimate of the position uncertainty of the true

PSEPs. On average the difference was 1.37 mm and in 95% of the

cases the difference between the two human annotations

was< 3.58mm. Two sources contributed to this difference (1)

quantification errors and (2) the uncertainty / unreliability of the

human annotation. The quantification error originated from the

annotation program, which used integer coordinates to describe

PSEPs. A rough estimate of this error is w0.5 mm along the two

coordinate axes. The human annotation unreliability originated

from differences in test image interpretation.

When the leaf detector found two leaves of a single plant

the corresponding true PSEP will, with a probability of 95%, be

within a distance of 5 mm or less from the estimate. This and

similar values are shown in Table 1. Sun et al. (2010) were able

tomeasure thepositionof transplanted cropswithanRTK-GPS

unit within 51 mm for 95% of the plants. The accuracy of the

vision system was therefore one order of magnitude better

than RTK-GPS seeding of plants. When three or more leaves

wereused to predict PSEPs the accuracywas comparable to the

human annotation. One interpretation of this is that the

developed method can predict PSEPs with a higher accuracy

than the reference predictions based on manual annotation

given that two or more leaves are detected for each PSEP.

5. Conclusion

A system for automated PSEP estimation of sugar beet

plants (in growth stages BBCH10-14) based on leaf detec-

tion has been developed and tested. In a set of test images

the system detected 46.7% of the present leaves. A multi-

variate Gaussian PSEP model was built based on the

detected leaves and manual annotation of true PSEPs.

Given centre of mass and attach point of a single leaf the

model stated that the average true PSEP was at a distance

of 6.2 mm from the petiole attachment point and placed on

the line connecting the leaf attach point and the leaf centre

of mass. Ninety-five % of the volume below the multivar-

iate Gaussian was contained within an ellipse with semi-

major and semi-minor axes of 12 mm and 6 mm

respectively.

In the set of test images the detected leaves were used to

predict the true PSEPs. With PSEP predictions based on single

leaves 90% of the true PSEPs were located within 20 mm of at

least one predicted PSEP location. In this case the average

distance from the predicted location to the true PSEP was

3.3 mm. When several leaves of the same plant are detected,

the PSEP models can be combined using least-squares esti-

mation and thus produce an even better estimate of the true

root location. For example, by combining two leaves the

average error was reduced to 1.9 mm. Precise quantification of

the error in three and four leaf based PSEP estimates is

hindered as these methods performed on par with the human

annotation used as reference.
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Åstrand, B., & Baerveldt, A.-J. (Jul. 2002). An agricultural mobile
robot with vision-based perception for mechanical weed
control. Autonomous Robots, 13(1), 21e35. http://dx.doi.org/10.
1023/A:1015674004201.

Backes, M., & Jacobi, J. (2006). Classification of weed patches in
Quickbird images: verification by ground truth data. EARSeL
European Association of Remote Sensing Laboratories, 5(2),
172e179. http://www.eproceedings.org/static/vol05_2/05_2_
backes1%.html.

Franz, E., Gebhardt, M.Unklesbay, K. (1991). Shape description of
completely visible and partially occluded leaves for identifying
plants in digital images. 34. p. 673e681.

Gales, M., & Airey, S. (Jan. 2006). Product of Gaussians for speech
recognition. Computer Speech & Language, 20(1), 22e40. http://

Fig. 10 e Easy and difficult cases for the leaf detector. Leaf tip candidates are marked by purple squares. Cyan indicates

concave locations. Detected leaves are marked in blue.

b i o s y s t em s e ng i n e e r i n g 1 1 1 ( 2 0 1 2 ) 8 3e9 0 89



www.sciencedirect.com/science/article/B6WCW-4FBH%W7F-
1/2/b1001c29af3057ecce30bfe8e9592955.

Griepentrog, H. W., & Dedousis, A. P. (2010). Mechanical weed
control, Vol. 20. Heidelberg: Springer Berlin, 171e179.

Griepentrog, H. W., Nørremark, M., Nielsen, H., & Blackmore, B. S.
(2005). Seed mapping of sugar beet. Precision Agriculture, 6,
157e165. doi:10.1007/s11119-005-1032-5. http://dx.doi.org/10.
1007/s11119-005-1032-5.

Kouwenhoven, J. K. (1997). Intra-rowmechanical weed
controlepossibilities and problems. Soil and Tillage Research,
41(1e2), 87e104.http://www.sciencedirect.com/science/article/
B6TC6-3RGT%BJD-7/2/3ce3ed554667f0adfed53ebb227deeb6.

Meier, U. (2001). Growth stages of mono-and dicotyledonous
plants. http://www.bba.de/veroeff/bbch/bbcheng.pdf.

Melander, B. (2000). Mechanical weed control in transplanted
sugar beet. In: 4th EWRS Workshop on Physical Weed Control.
http://orgprints.org/1542/1/Abstract_Elspeet1.pdf.

Neto, J. C., Meyer, G. E., & Jones, D. D. (Apr. 2006). Individual leaf
extractions from young canopy images using Gustafson-
Kessel clustering and a genetic algorithm. Computers and
Electronics in Agriculture, 51(1e2), 66e85. http://www.

sciencedirect.com/science/article/B6T5M-4J2M%44F-1/2/
b947a39d2c204692a56e44750203ac42.

Nørremark, M., Griepentrog, H., Nielsen, J., & Søgaard, H.
(2008). The development and assessment of the accuracy
of an autonomous gps-based system for intra-row
mechanical weed control in row crops. Biosystems
Engineering, 101(4), 396e410. http://www.sciencedirect.com/
science/article/B6WXV-4TX6%W5S-1/2/
8aede62984cd66ed1ef62aa58e1518f3.

Poulsen, F. (2010). Measuring emerging plants using machine
vision. http://www.visionweeding.com/Products/Plant-
Counting/Plant-Counting.htm.

Sun, H., Slaughter, D. C., Ruiz, M. P., Gliever, C., Upadhyaya, S. K.,
& Smith, R. F. (Apr. 2010). Rtk gps mapping of transplanted
row crops. Computers and Electronics In Agriculture, 71(1),
32e37.

Tillett, N., Hague, T., Grundy, A., & Dedousis, A. (2008).
Mechanical within-row weed control for transplanted crops
using computer vision. Biosystems Engineering, 99(2), 171e178.
http://www.sciencedirect.com/science/article/B6WXV-4R5H%
1V8-2/2/4487816230cc4673f885d6bd784c79a2.

b i o s y s t em s e n g i n e e r i n g 1 1 1 ( 2 0 1 2 ) 8 3e9 090



Paper IV

Performance evaluation of a crop /
weed discriminating microsprayer

Performance evaluation of a crop / weed discriminating microsprayer. /
Midtiby, Henrik Skov; K. Mathiassen, Solvejg; Andersson, Kim Johan;
Jørgensen, Rasmus Nyholm. Computers and Electronics in Agricul-
ture, Vol. 77, Nr. 1, 2011, p. 35-40.

Accepted by Computer and Electronics in Agriculture.

159



160



Performance evaluation of a crop/weed discriminating microsprayer

Henrik Skov Midtiby a,⇑, Solvejg K. Mathiassen b, Kim Johan Andersson a, Rasmus Nyholm Jørgensen a

a University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M, Denmark
b Department of Integrated Pest Management, Research Centre Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark

a r t i c l e i n f o

Article history:
Received 23 March 2010
Received in revised form 8 March 2011
Accepted 20 March 2011

Keywords:
Machine vision
Weed crop discrimination
Microsprayer
Herbicide reduction
Site-specific
Close-to-crop

a b s t r a c t

An intelligent real-time microspraying weed control system was developed. The system distinguishes
between weed and crop plants and a herbicide (glyphosate) is selectively applied to the detected weed
plants. The vision system captures 40 RGB images per second, each covering 140 mm by 105 mm with
an image resolution of 800 � 600 pixels. From the captured images the forward velocity is estimated
and the spraycommands for the microsprayer are calculated. Crop and weed plants are identified in
the image, and weed plants are sprayed. Performance of the microsprayer system was evaluated under
laboratory conditions simulating field conditions. A combination of maize (Zea mays L.), oilseed rape
(Brassica napus L.) and scentless mayweed (Matricaria inodora L.) plants, in growth stage BBCH10, was
placed in pots, which were then treated by the microspray system. Maize simulated crop plants, while
the other species simulated weeds. The experiment were conducted at a velocity of 0.5 m/s. Two weeks
after spraying, the fraction of injured plants was determined visually. None of the crop plants were
harmed while 94% of the oilseed rape and 37% of the scentless mayweed plants were significantly limited
in their growth. Given the size and shape of the scentless mayweed plants and the microsprayer geom-
etry it was calculated that the microsprayer could only hit 64% of the scentless mayweed plants. The sys-
tem was able to effectively control weeds larger than 11 mm � 11 mm.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Effective weed control is a vital part of agriculture. Convention-
ally, weeds are controlled by an overall application of herbicides to
the field. It has become apparent that herbicides place a heavy
burden on the environment. Herbicide usage is already controlled
by European laws, but in the future these restrictions are expected
to increase significantly. Increased restrictions will reduce the
number of herbicides and thus there exists a demand for new weed
control methods. With the microsprayer approach developed in
this article, herbicides are mainly deposited on weed plants.

In patchspraying, the entire field is divided into smaller patches
and then the herbicide is adjusted according to the presence of
weeds (Christensen et al., 2009). When the patch size is reduced,
the potential reduction in herbicide use is increased (Lund et al.,
2008). When the patch size reaches the size of a single plant, the
process is denoted microspraying. The microspraying technique
has two significant advantages: (1) high reduction of the amount
of herbicide deposited on the soil, which minimizes the issue of
herbicide leaching and (2) almost no deposition of herbicide on
crop plants, which eliminates the potential presence of herbicide

residues in the harvested crop plants and potential damages to
the crop. In addition microspraying can use both selective and
non-selective herbicides. Non-selective herbicides, like glyphosate
used in this experiment, harm any plant while selective herbicides
are tolerated by specific crop plants but can cause yield loss.

Lee et al. (1999) used a microsprayer to control weeds in toma-
to. The spraying system moved forward with a continuous velocity
of 0.22 m/s. A camera grabbed images of the ground in front of the
spraying device. A grid consisting of 8� 18 cells were imposed on
the image, and the cells containing weed plants were marked for
spraying. The system was able to spray 47.6% of the weeds while
24.2% of the tomato plants was also sprayed. A similar spraying
device was used by Lamm et al. (2002), to spray weeds with elon-
gated leaves in a cotton field. The system sprayed 89% of the weeds
and 22% of the cotton plants.

Søgaard and Lund (2005) investigated the accuracy and preci-
sion of a robotic system carrying a microsprayer hitting weed
markers (circles with a diameter of 12 mm). The robotic system
switched between two modes: image analysis and forward motion
while spraying the detected circles. During the image analysis step
where a single image was acquired, targets were identified and
marked in a spray plan. The spray plan was represented as an
8 � 16 grid and each cell could either be marked for spraying or
not. After the spray plan was generated, the robotic system moved
180 mm forward with a velocity of 0.2 m/s. During this motion the
microsprayer was activated according to the spray plan. When the

0168-1699/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.compag.2011.03.006
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movement ended a new image was acquired and the entire process
repeated. The system was able to hit the weed markers with an
average position error of 2.8 mm.

Nieuwenhuizen et al. (2010) evaluated a microspraying system
consisting of five nozzles used for controlling volunteer potatoes in
sugar beet. Average color information was calculated for 11 � 11
pixel bins and used to distinguish between crop and weed plants
using an adaptive Bayesian classifier. With a forward speed of
0.8 m/s the system controlled growth of 77% of the volunteer pota-
toes and killed up to 1% of the crop plants.

In present paper a spray targeting system that does not rely on a
fixed cell grid is evaluated. By avoiding the fixed grid, the ability to
hit small targets is expected to increase. When controlling a
microsprayer it is important to trigger the sprayer when it is
directly above the target. Using a fixed grid, the set of possible
activation-times is reduced. None of the above mentioned micro-
spray systems can move at a speed above 0.3 m/s and maintain a
weed control efficiency higher than 90%. The relative low speed
of the spray systems severely limits the number of plants that
can be processed in a given period and a low weed control effi-
ciency renders the systems economically unattractive. Compared
to other microspray systems, our system has a higher speed rela-
tive to the treated plants and can therefore control weeds more
efficiently.

Present article covers: (1) a detailed description of the vision
control system and microsprayer setup, (2) calculations of the
achievable hit rate given the geometry of the microsprayer and size
and shape of the treated plants and (3) a performance evaluation of
the entire system conducted under laboratory conditions.

2. Materials and methods

The system is a combination of three separate subsystems, (1)
vision system, (2) spray planner using the acquired images and
(3) physical microsprayer. The vision system captures images
(Fig. 1a) which are processed by two different subsystems: a plant
recognizer and a velocity estimator. The velocity estimator com-
pares two consecutive images and determines the displacement
of their common content. The plantrecognizer analyses each image
and locates green objects in the image. These objects are then clas-
sified as crop or weed plants, in this process a crop and weed map
is generated (Fig. 1b). The map is an interpreted version of the in-
put image covering the same area. Based on this map and the esti-
mated forward velocity spraycommands are generated and sent to
the microsprayer controller.

2.1. Vision system

Homogeneous illumination of the field of view is provided by 18
3W white LEDs (ProLight PG1X-3LXS-SD) that are directed on the
white inner surface of a half cylinder placed over the spray loca-
tion. When placed in direct sunlight, the half cylinder ensures that
the area to be captured is kept free of hard shadows and the homo-
geneous illumination eliminates specular highlights. These proper-
ties have been verified in small scale experiments with the half
cylinder placed approximately 100 mm above the soil surface
and exposed to direct sunlight.

Images were acquired by a CMOS camera (PixeLINK PL-B742F-
R) pointing downwards. The field of view was 140 mm � 105 mm
and was acquired as an 800 � 600 pixel image. The spray system
consisted of six nozzles each with a fixed location and all pointing
directly downwards. The six areas that could be targeted by the
spraynozzles were all within the captured area, as well as the soil
and plants that would pass below the microsprayer during the next
100 mm of movement. To determine the spraycells, the spraynoz-

zles were activated while the sprayer was at rest and an image was
acquired. The spraycells were then set to the sprayed locations in
the acquired image. Images were acquired with a short exposure
time of 9 m/s to reduce motion blur and 40 images were captured
per second. The acquired images were transferred to the image
processing computer via a Firewire connection. Image processing
were performed on a Lenovo ThinkPad W700 laptop equipped with
an Intel Core 2 Duo T9600 2.8 GHz processor and 4 GB ram running
Windows XP. The software was developed using the C++ program-
ming language and consisted of three separate threads which han-
dled image acquisition, image analysis and sprayplanning,
respectively. The software library OpenCV (Bradski and Kaehler,
2008) was used for the implementation of the image processing
methods.

2.2. Ground velocity estimation

Velocity of the spray system relative to the soil surface was esti-
mated from the acquired sequence of images, based on the
assumption that perspective distortions can be ignored. After im-
age N has been captured, it was compared to image N � 1 and
the relative motion between the two images was estimated. Using

Fig. 1. An example of the images acquired by the vision system. The numbers in (b)
describes the elements at the shown locations. (1) Maize, (2) oilseed rape, (3)
scentless mayweed, (4) target areas of the six spraynozzles and (5) part of the
microsprayer. One of the scentless mayweed plants is located in the target area of
spraynozzle 4. Part (4) and (5) are fixed in the image while (1)–(3) moves from left
to right.
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the relative motion and the difference between the time of image
acquisition for the two images the velocity was calculated.

Initially both images were scaled down to a resolution of
200 � 150 (from 800 � 600). An area measuring 100 � 125 pixels
was extracted from the central part of image N � 1, this part of
the image was used as a template. The cross correlation between
the template and image N was determined, as a function of the rel-
ative position of the template with respect to image N. The location
where the template has the highest correlation with image N was
determined. Then the offset between the template location in im-
age N � 1 and the best matching location in image N was deter-
mined. This offset was used as an estimate of the velocity of the
field of view, e.g. how fast one object moved across the field of
view measured in pixels per unit of time. The template matching
can be calculated efficiently using Fast Fourier Transforms. Tem-
plate matching used on average 5.1 m/s per frame. If no objects
are present in the images, the best matching location is not well
defined which then will result in a random location being selected
as the best matching location.

2.3. Plant detection

To locate plants in the acquired image, the excess green color
index (ExG) introduced by Woebbecke et al. (1995) was used:

ExG ¼ 2G� R� B ð1Þ

where R, G and B are the red, green and blue pixel values of the cur-
rent pixel. The pixel values are stored as integer values in the range
[0;255]. The generated excess green image is then smoothed and
binarized using a threshold value of 55. The threshold value was
chosen based on the images acquired by the vision system.

Connected regions in the segmented image are located, and for
each of the regions the size and some shape descriptors are deter-
mined. The shape descriptors used are the seven scale, translation
and rotation invariant moments introduced by Hu and February
(1962). Regions that intersect the border are considered incom-
plete and therefore discarded.

2.4. Classifier

For classification between crop and weed plants a nearest
neighbor Bishop (2007) classifier was used. As the calculated fea-
tures have different magnitudes (size �1000 and Hu1 �0.1) the
features are rescaled before classification. The rescaling consists
of multiplying the features with the weights given in Table 1.
The weights were chosen based on the typical magnitude of the
features. Features with high noise levels were given a decreased
weight to decrease the influence of the noise. Performance of the
classifier was not investigated directly, but small experiments on
the experimental setup showed a relative high classification
accuracy.

After classification the presence of crop and weed plants are
stored in a crop/weed map. The crop/weed map is an image with
similar dimensions as the original image where pixels belonging
to a weed plant have the value 1 and crop plant pixels have the va-
lue 255. Areas with no plants present are identified by the value 0.

2.5. Sprayplanning

Sprayplanning was performed once for each of the individual
spraynozzles. For each nozzle, the area that the nozzle was ex-
pected to pass, was examined in the crop/weed map. Presence of
crops and weeds were determined as a function of the distance
to the current nozzle. Regions where only weeds were present
were marked for spraying. When a weed was found in the course
of the nozzle, a command is sent to the microsprayer controller
that the nozzle should be opened at the time tspray, which was cal-
culated based on the acquisition time of the processed image timg,
the distance to the weed dweed, the current forward velocity v and
the delay tdelay caused by the entire system. The relationship is:

tspray ¼ timg � tdelay þ
dweed

v ð2Þ

The delay parameter was adjusted during the calibration phase be-
fore the experiment.

2.6. Spray system

The spray system was based on a Willett 3150 Si/800 inkjet
printer head. Off the shelf the printer head has seven nozzles which
can be controlled individually; six of these were used, as one was
malfunctioning. The six nozzles are spaced evenly over a distance
of 53 mm, which corresponds to a distance of 10.5 mm between
two adjacent nozzles. In the experimental setup there was a dis-
tance of �100 mm between soil surface and nozzle.

The computer sends spraycommands to a microcontroller via a
USB connection. After receiving the commands, the microcontrol-
ler immediately opens the requested nozzles for 1 ms and 0.2 lL
spray liquid is ejected. The spray liquid consists of water mixed
with RoundUp Bio (360 g/L glyphosate as an isopropylamine salt,
Monsanto Europe) with a concentration of 5 g/L. This ensures that
in one spray application there will be enough glyphosate to effec-
tively control the growth of the weed seedling. According to
Søgaard et al. (2006), 0.8 lg of glyphosate is enough to effectively
control the growth of Solanum nigrum L. seedlings. Unpublished re-
sults show that oilseed rape seedlings are effectively controlled by
a similar amount of glyphosate.

2.7. The experimental setup

Crop and weed plants were seeded in pots with a diameter of
130 mm and a volume of 1 L. The plants were raised in glasshouse.
The pots had to be moved below the spray system with a small er-
ror in the transversal direction as the plants are placed in a 50 mm
wide band inside the pots and the spray system can only treat a
60 mm band. To run the experiments, the microsprayer including
illumination, vision and control systems was mounted above a
conveyor belt, such that the distance between spraynozzles and
soil surface in the pots was approximately 100 mm. The purpose
of the conveyor belt was to move potted plants below the operat-
ing microsprayer system in a steady motion.

2.8. Experimental method

Three species were used: maize, oilseed rape and scentless
mayweed. At the time of the experiment, the cotyledons had just
emerged, which equals growth stage 10 on the BBCH scale (Meier,
2001). Weed control should be performed before growth stage
BBCH12 according to Danish recommendations (Petersen and Jen-
sen, 2010). One crop (maize) plant was placed near the pot centre,
while 1–2 oilseed rape and 2–3 scentless mayweed plants were
placed randomly in a 50 mm wide band centred on the maize

Table 1
Feature weights used in the classifier.

Feature Weight

Size 0.001
Hu1 6.667
Hu2 8.403
Hu3 71.428
Hu4-7 100.000
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plant. The plants were placed such that no leaves overlapped other
plants.

Four pots were randomly selected as control pots. These pots
received no treatment by the microsprayer system and the plants
inside the pots were used to train the classifier. The classifier data-
base was filled with the control plants, where maize was marked as
crop and oilseed rape and scentless mayweed were marked as
weeds. In total four maize, eight rape and 10 mayweed plants were
present in the four control pots. The 33 remaining pots were placed
on a conveyor belt, which carried the pots below the microsprayer
at a velocity of 0.5 m/s, while the spray system was activated. In to-
tal 33 maize, 54 oilseed rape and 76 scentless mayweed plants
were treated by the microsprayer.

Two weeks after the microspraying, the status of each individ-
ual plant was visually evaluated using two categories: plants fol-
lowing the expected growth rate and plants severely behind the
expected growth rate. The expected growth rate was estimated
using the observed growth in the four control pots. Dry weight
measurements of the oilseed rape plants were made directly after
the visual evaluation.

2.9. Interpretation of experimental results

The experiment consisted of exposing a number of plants n to
the microsprayer treatment. Two weeks after the treatment, the
number of normal growing plants k was determined. The normal
growth fraction f of the plants exposed to treatment can be esti-
mated from f ¼ k=n. In addition to the normal growth fraction,
the uncertainty of this fraction was estimated. The credible interval
is used to describe the uncertainty of the determined normal
growth fraction. Using the Binomial distribution, the experimental
support for a given normal growth fraction hypothesis can be ex-
pressed as being proportional to

pðf jn; kÞ / f k � ð1� f Þn�k ð3Þ

Note that this value is maximized for f ¼ k=n. We assume that
pðf jn; kÞ is normalized, such that
Z 1

0
pðf jn; kÞdf ¼ 1 ð4Þ

The probability q, that the real plant growth fraction is inside the
interval ½fl; fh� is then

q ¼
Z fh

fl

pðf jn; kÞdf ð5Þ

The shortest interval ½fl; fh� that covers a given fraction q was used as
a credible interval at the q level, this approach was described by
Ross and Nov. (2003).

2.10. Probability of hitting small plants

When a small plant passes below the microsprayer between
two of the nozzles, it is not always possible for the spray system
to hit the plant. This can be explained by the geometry of the spray
system, where the distance between two adjacent nozzles is larger
than the width of the sprayed area of one nozzle. The area between
two nozzles that cannot be sprayed is denoted the deadzone
(Fig. 2). If a plant is in the deadzone throughout the entire passage,
the spray system has no chance of hitting it. The following values
are used to describe the setup: w is the distance between two adja-
cent nozzles, ws is the width of the area that are sprayed by a single
nozzle, h is the plant orientation and weff ðhÞ is the effective width of
the plant (Fig. 2). The effective width of a plant is its width
measured in the direction perpendicular to the moving direction.
If the effective width is larger than the deadzone width

ðweff > w�wsÞ, some part of the plant will always overlap an area
that can be sprayed and thus it is possible to hit the plant. In the
other case where weff < w�ws the probability of hitting the plant
with random location is given by the fraction weffþws

w . To calculate
the probability of hitting a plant with random orientation and loca-
tion the following expression is used.

phit ¼
ws

w
þ 1

p

Z p

0

min w�ws;weff ðhÞð Þ
w

dh ð6Þ

To simplify the calculations, the plant shape is described by an el-
lipse, with the major axis a and the minor axis b. The ellipse shape
parameters were chosen such that the ellipse covered the entire
plant. Eq. (6) can then be evaluated numerically using the values rel-
evant for the used microsprayer setup ðw ¼ 10 mm;ws ¼ 2 mmÞ, and
the parameters describing the plant shape. Note that the calculated
values are based on two assumptions: (1) that all the plants have the
same shape and size and (2) that all the plants are located and ori-
ented randomly. The estimated hit probability is a statistical upper
bound of the performance of the optimal vision and spray control
system.

The difference between the observed normal growth fraction
and estimated probability of not being able to hit the plant species,
f � pmiss, is a measure of the performance of the spray system. A
low value indicates that the system can effectively target the given
plant species at this growth stage, and a high value shows that the
system did not hit all plants that it should be able to. Using this
measure it is possible to compare the targeting performance of
the spray system when targeting different objects, varying in size
and shape.

3. Results and discussion

Table 2, lists the plant shape parameters used for the estimation
as well as the obtained hit probabilities. The hit probabilities re-
veals that the geometry of the microspray system is suitable for
targeting plants larger than 11 mm� 11 mm but is unsatisfactory
for smaller plants.

There was a clear difference between control and treated group.
All plants in the control pot, Fig. 3a, were now in a more developed
growth stage than at the time of spraying. For the treated pot in
Fig. 3b, the maize plant and a single scentless mayweed plant
had evolved into a more developed growth stage. For the maize
and oilseed rape plants, there were no doubt of which category
to place the plants into, as they either grew as expected or their
growth were stopped at the BBCH 10 stage. The scentless mayweed
plants were more difficult to classify, as only a part of the plants
grew as expected (48 plants) or stopped their growth at the BBCH
10 stage (18 plants). The remaining fraction (10 of 76) were some-
where between these two stages. Table 2 lists the number of trea-
ted plants and the number of the ones that followed the expected

Fig. 2. Illustration of the effective plant width weff and the parameters w and ws for
the microsprayer setup.
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growth pattern. Three of the treated oilseed rape plants had a dry
weight comparable to the control plants. The weight distribution of
the control and the treated plant populations are visualized in
Fig. 4.

The oilseed rape plants, which had the largest leaf area per
plant, were effectively controlled by the microsprayer. Only 6% of
the treated plants followed the expected growth pattern for un-
treated plants, while 94% was effectively controlled. In comparison
only 37% of the scentless mayweed plants were sprayed, which is
much less than the expected hit probability of 66%. This difference
indicates that the system is not able to locate and target small ob-
jects effectively. The reason could be timing problems of the
microsprayer control system, imprecise calibration of the delay
parameter tdelay or faulty classification of the plants as crop plants.
The f � pmiss measure is not relevant for the maize plants, as they
were not targeted for spraying. All of the 33 treated maize plants
followed the expected growth pattern, this indicates the system
was able to correctly classify the plants as crops.

A main disadvantage with the experiment is that the input to
the vision system was discarded during the experiment. Therefore
it is not possible to investigate how the system failed in the cases
where plants were not hit. By storing all the acquired images be-

fore they are processed, it should be possible to redo the image
analysis and the following sprayplanning.

The system by Søgaard and Lund (2005) relies on controlling
the motion of the vision and spray system, this makes the system
infeasible to mount on an existing platform. Our system is self con-
tained and needs only to be moved in a steady motion above the
area that should be treated. The volunteer potato controlling sys-
tem described in Nieuwenhuizen et al. (2010) and our system have
many common properties. The main difference is the geometry of
the microsprayer setup, the nozzle spacing is narrower in our set-
up, this increases the resolution of the spray system which can
then target weed plants closer to crop plants.

A direct limitation of the described system is the narrow region
ð60 mmÞ in which weeds can be controlled. By replacing the
microsprayer unit with a larger one, the region can be extended
to cover the full range of the vision system � 100 mm. If the region
should be larger the vision system has to be redesigned.

The future of the microsprayer technique depends on several
things. The system presented can reliably detect and control weed
plants with a size larger than 11 mm� 11 mm when in a steady
forward motion with a velocity of 0:5 m/s. The forward velocity
of 0:5 m/s is probably not enough to make the system economi-
cally feasible. The challenge will be to move the system from con-
trolled indoor facilities to more challenging circumstances in the
field. Use of controlled illumination and shielding from direct sun-
light is expected to make the system more resistent to changes in
the natural illumination. The main change will be to go from the
steady motion to a more shaky motion. Under a steady forward
motion is it possible to predict the weed trajectory relatively to
the vision system with high accuracy, when the motion is dis-
turbed the quality of such a path prediction will decline rapidly,
deteriorating spray accuracy.

4. Conclusion

A machine vision system was developed for controlling a
microsprayer system. The goal was to develop a system that can

Table 2
Short summary of the experimental results. (a and b): major and minor axes of the ellipse shaped plant model ðpmissÞ: probability of the system not being able to hit the plant
model (k): number of plants that grow unaffected after the microspray treatment. (n): number of plants treated by the microsprayer system. (f): normal growth fraction. (95% CI):
the shortest credible interval for the rate of normal growth. ðf � pmissÞ: miss rate that cannot be explained by plant size.

Plant Spray probability Experimental results f � pmiss

a [mm] b [mm] pmiss k n f 95% CI

Maize(crop) 3.5 3.5 0.55 33 33 1:00 ½0:92; 1:00� 0:45
Scentless mayweed 8.0 2.5 0.34 48 76 0:63 ½0:52; 0:73� 0:29
Oilseed rape(weed) 13.7 11.0 0.00 3 54 0:06 ½0:01; 0:14� 0:06

Fig. 3. Comparison of a control pot and a sprayed pot. In the sprayed pot, the oilseed rape plant is severely damaged by the herbicide while the maize plant appears
unaffected. Of the two scentless mayweed plants that are present in the sprayed pot one is severely injured while the other grows unaffected.

Fig. 4. Measured dry weight of the oilseed rape plants (representing weeds) in the
control ðn ¼ 8Þ and treated ðn ¼ 53Þ groups two weeks after microspraying. Three
outliers can be identified in the treated group, these are the plants that the
microsprayer missed during the treatment.
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detect, classify and effectively control weed plants while the sys-
tem was moving with a velocity of 0.5 m/s. The system was tested
in a relatively simple situation with two weed species (scentless
mayweed and oilseed rape) in maize. With a velocity of 0.5 m/s be-
tween the soil surface and the microsprayer system, the system
was able to effectively control weeds larger than 11 mm � 11 mm.
But only 37% of the smaller scentless mayweed plants were effec-
tively controlled. The low success rate cannot be explained by the
small plant size alone, but may be explained by a sub optimal
sprayplanning system, problems related to depositing enough her-
bicide on the small leaves or a combination of both.
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Abstract

Mechanical in–row weed control of crops like sugarbeet require precise knowl-
edge of where individual crop plants are located. If crop plants are placed
in known pattern, information about plant locations can be used to discrim-
inate between crop and weed plants. The success rate of such a classifier
depends on the weed pressure, the position uncertainty of the crop plants
and the crop upgrowth percentage. The first two measures can be combined
to a normalized weed pressure, λ. Given the normalized weed pressure an
upper bound on the positive predictive value is shown to be 1

1+λ
. If the weed

pressure is ρ = 400m−2 and the crop position uncertainty is σx = 0.0148m
along the row and σy = 0.0108m perpendicular to the row, the normalized
weed pressure is λ ∼ 0.40; the upper bound on the positive predictive value
is then 0.71. This means that when a position based classifier predicts that
a certain plant is a crop plant 71% of the times it will be correct.

Keywords:

1. Introduction1

Typical work flows in agriculture are often based on crop plants placed2

in row structures. Cereals like barley and wheat are placed in rows with3

no clear structure within the row, while Maize, Sugar beets and other high4

value crops are placed in rows with a clear defined intra-row spacing between5
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crop plants. Given the position of a single sugar beet plant, it is possible6

to predict locations of nearby crop plants, based on information about plant7

distances within the row.8

Plant classification based on spectral properties and plant morphology9

(Weis and Sökefeld, 2010) is vulnerable to variations in plant appearance.10

There can be a large variation of plant appearance within field, between11

fields and during growth season. Also the weed pressure and population12

varies. However, the sawing pattern is more stable. Therefore it is interesting13

to use classifiers that utilize the position information to discriminate between14

crops and weeds.15

Tillett et al. (2001) used crop position information to distinguish between16

crop and weed plants in a field of brassica. The crops were transplanted to17

a square pattern with side lengths 0.48m in three adjacent rows. They state18

that it is practical to track crop plants using extended Kalman filtering, but19

gives no numbers of the achieved classification rate. Onyango and Marchant20

(2003) detected grid placement of cauliflower and used this information to21

distinguish between crop and weed pixels. The highest obtained correct crop22

and weed pixel classification rates were 96% and 92%.23

The two earlier examples looked at plants placed in a 2D pattern, while24

Åstrand and Baerveldt (2004) used crop position information in a single25

row to classify crop and weed plants in sugar beet fields. In a field with26

a weed pressure of 50 plants/m2, they recognized 96% of the crop plants27

as crop plants by searching for a pattern consisting of four plants placed in28

a row structure with the inter plant distance set to the known crop plant29

distance. The method was based on searching for four plants on a line with a30

known plant spacing. In Åstrand (2005) position information was combined31

with individual plant features for recognizing crop plants. In field conditions32

with low weed pressure (50 weeds/m2) they achieve a positive predictive33

value (PPV) of 74% for recognizing crops when only using plant position34

information. When the weed pressure is increased to 400 plants/m2 the PPV35

decreases to 47%. In both cases were the crop upgrowth around 70%. This36

decrease is explained by increase of plant occlusion / overlapping resulting37

in that the row structure can be difficult to recognize when the number of38

weed plants is large. To determine plants centres when some of the leaves are39

occluded the method described in Midtiby et al. (2012) should be considered.40

Position information might not be sufficient, but what can is the limit of41

this group of methods? In this paper we investigate the upper limits of what42

can be achieved by using information about plant positions. Theoretical43

2



considerations show that an important factor for explaining the achievable44

PPV is the normalized weed pressure, that depends on weed density and45

position uncertainty of crop plants. Four different strategies for localising46

crop plants based on plant locations was implemented and tested in a sim-47

ulated environment. Results from testing the three strategies supports the48

theoretical considerations. Finally are results presented by Åstrand (2005)49

found to agree well with the derived theoretical upper bound.50

2. Materials and methods51

In this section the mathematical foundation for calculating the achievable52

PPV is presented. A central part of these calculations is the normalized weed53

pressure, a dimensionless quantity, which limits the achievable PPV. Four54

different algorithms using context information are then described and tested55

in a simulated environment. The test environment allow investigation of the56

influence from parameters like weed density and crop position uncertainty.57

2.1. Normalized weed pressure58

The normalized weed pressure is the average number of weed plants closer59

to a seeding point than the nearest crop plant. The crop plant position60

probability is modelled as a Gaussian distribution with centre at (0, 0) and61

the uncertainties σx, σy in the x and y directions respectively (c ∈ {x, y}).62

pσc(c) =
1

σc
√

2π
exp

(−c2

2σ2
c

)
(1)

The position is described in terms of the distance along the crop row (x–63

coordinate) and the distance perpendicular to the crop row (y–coordinate).64

The next step is to determine the number of weed plants closer to the ori-65

gin than the crop–point (x, y) using the Mahanolobis distance metric. The66

number of weed plants is the weed density ρ multiplied with the area of the67

ellipse going through (x, y) with semi–major axis along the x–axis and semi–68

major and minor axes proportional to σx and σy. See figure 2. The expected69

number of weeds is given by70

nw(x, y) = ρπσxσy

(
x2

σ2
x

+
y2

σ2
y

)
(2)
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Symbol Unit Description
x m Coordinate along x-axis (direction along the

crop row), x = 0 is the expected crop location
y m Coordinate along y-axis (perpendicular to the

crop row), y = 0 is the expected crop location
σx m Crop position uncertainty along the x–axis
σy m Crop position uncertainty along the y–axis
α 1 Scaling factor
ρ m−2 Weed density
λ, NWP 1 Normalized weed pressure
pσc(c) 1 Position probability distribution of variable c
nw(x, y) 1 Expected number of weeds closer to the seeding

location than the point (x, y)
~xk m Coordinates of the kth plant
~xoffset m Coordinates of the first crop plant in the row

structure
~d m Vector from one crop position to the next ex-

pected crop position
k, i, m 1 Index variables
l 1 Number of occurrences in a Poisson distribution
ci 1 Position score associated to the ith plant
s 1 Scaling factor
N 1 Number of neighbour positions to examine
φ 1 Probability of not seeing any plants within 3σ
γ 1 Crop upgrowth
f 1 Fitting parameter for classifier performance
PPV 1 Positive prediction value
ePPV 1 Expected positive prediction value
oPPV 1 Observed positive prediction value
ncrop 1 Number of crop plants in dataset
nweed 1 Number of weed plants in dataset
ntotal 1 Total number of plants in dataset
f(l, β) 1 Probability of seeing l events in a Poisson pro-

cess with an average number of events of β
xn m nth crop location
n 1 Crop plant number
σseed-plant m Deviance between seed placement and resulting

plant position
TP True positives
FP False positives
TN True negatives
FN False negatives
CI Credible interval

Table 1: Symbols and associated units used in the paper.
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The average number of weeds closer to the seeding point than the nearest71

crop plant can then be expressed with the following double integral.72

λ =

∫ ∞

−∞

∫ ∞

−∞
pσx(x) · pσy(y) · nw(x, y) dx dy (3)

The value of the double integral is λ = 2πσxσyρ (see derivation in appendix73

Appendix A.2), this value is denoted the normalized weed pressure (NWP).74

2.2. Positive predictive value given normalized weed pressure75

If a classifier based on the plant positions chooses the plant nearest to76

the estimated grid position as crop, it is interesting to look at the probability77

of misclassification, which happens when there is a weed plant closer to the78

grid location than the nearest crop plant. To calculate this probability we79

will assume that the weeds are uniformly distributed and model the number80

of weed plants within an area with a Poisson distribution81

f(l; β) =
βle−β

l!
(4)

with l as the number of observed weed plants and β the average number of82

weeds seen in an area of this size, calculated as weed density ρ times the83

size of the area. The case where no weed plants are observed in the area84

corresponds to l = 0, in which the probability is given by exp (−β). With85

a crop plant a (x, y) is the probability of not seeing a weed plant closer to86

the grid point exp (−nm(x, y)). By averaging this over all possible values of87

x and y while weighting with the probability of seeing a crop plant at these88

locations, the following integral appears.89

PPV =

∫ ∞

−∞

∫ ∞

−∞
pσx(x) · pσy(y) · exp (−nw(x, y)) dx dy (5)

The value of the double integral is PPV = 1
1+2πσxσyρ

(see derivation in ap-90

pendix Appendix A.3). This value can also be expressed in terms of the91

normalized weed pressure, then it is PPV = 1
1+λ

. This is an upper bound on92

the achievable positive predictive value that can be reached using position93

information alone for recognizing crop plants. If the true seeding position is94

unknown the performance will be lower.95
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Figure 1: Row structure in sugar beets and cabbage. Images provided by Frank Poulsen
Engineering, www.visionweeding.com, 2011.

(x, y)

ασx

ασy

Crop row direction.

Figure 2: Given a crop plant at (x, y), the area that should be weed free for obtaining
a correct classification is marked with a grey shading. All points in the shades area has
a smaller Mahanolobis distance to the expected crop location than the observed crop at
(x, y) The area of the shaded region is πσxσy

(
x2/σ2

x + y2/σ2
y

)
. Origin is the expected

crop plant position.
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2.3. Crop localisation based on plant locations96

The following subsection shows different methods for recognizing crop97

plants given plant positions as input. Four different methods are described,98

of which two are reference methods for establishing upper and lower bounds99

on classifier performance. All methods takes a list of all observed plant100

positions (~xk, k ∈ 1 . . . , ntotal) as input together with the number of crop101

plants ncrop present in the dataset.102

2.3.1. Random plant selector103

From the set of plant positions ~xk are ncrop plant positions drawn ran-104

domly with no replacements. This method uses no information about the105

row structure and can therefore be used as a lower bound on the achievable106

recognition rate.107

2.3.2. Position scores108

In this method a position score is calculated for all of the observed plant109

positions. Given a plant location, the position score depends on location110

of nearby plants. If the nearby plants follow the crop plant structure the111

calculated score is high. The score function probes the N adjacent expected112

crop locations and for each of them finds the plant closest to this position. If113

there are plants nearby the expected crop locations the score for that position114

is high, otherwise it is reduced.115

ci =
N∑

m=1

[
max
k

exp

(
−||~xk − ~xi −m · ~d||2

2s2σxσy

)]
(6)

The scaling factor s was set to 5, tests showed that values outside the interval116

[2, 8] reduced the performance of the method, inside the interval the perfor-117

mance was unaltered. After calculating the position score for all observed118

plant locations the ncrop plant positions with the highest score were marked119

as crop plants.120

2.3.3. Path scores121

This method calculates plant position scores by looking at the position122

score of neighbouring plants. All plant position scores are divided in two123

parts, a base value of 1 and a contribution of a percentage of a neighbour-124

ing plants position score. The contribution percentage is determined by the125

7



relative positions of the neighbouring plants, if the plant positions are likely126

neighbours the percentage is high and otherwise it is lowered. This percent-127

age is modelled as an exponential function with the distance from expected128

to observed plant position squared divided with the crop position uncertain-129

ties. In this description it is assumed that the plant which position score130

should be calculated is positioned exactly at a grid location. Plants near the131

prior grid location are all investigated and it is determined which plant (and132

corresponding position score) can increase the current plants position score133

maximally. Such a measure can be computed efficiently, by calculating the134

position scores from left to right using dynamic programming. The position135

score of the ith plant can then be expressed as136

ci = 1 + max
k

[
ck · exp

(
−||~xk − ~xi − ~d||2
2 · (2σx) · (2σy)

)]
(7)

2.3.4. Known seeding positions137

In addition to the plant positions, this method also has access to informa-138

tion about all grid locations on which there is placed crop plants. For each139

of these grid locations the nearest plant is identified and marked as crop.140

This method is implemented for confirming the predicted upper bound on141

the achievable PPV given a normalized weed pressure λ.142

2.4. Test suite143

For evaluation of the implemented crop recognition methods, a simulation144

environment was implemented. Given a set of parameters (weed density and145

crop position uncertainty) the simulation environment would produce a set146

of crop plant positions and a set of weed plant positions. The generation147

of these position sets is described in 2.4.1. These two sets of positions was148

combined to one set which was then handed over to the method that should149

be tested. The performance of the method was then evaluated and a resulting150

PPV value was obtained. The evaluation procedure is described in 2.4.2.151

2.4.1. Generation of plant positions152

The nth grid location had the position153

~xn = ~xoffset + n · ~d (8)
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where ~xoffset is the position of the first plant and ~d is the distance from one154

crop plant to the adjacent crop plant. For each grid location a crop plant155

were placed on that point and adjusted with x and y displacements drawn156

from normal distributions with zero mean and σx and σy standard deviations.157

Weed plant positions were drawn from a uniform distribution of the sim-158

ulated area. The number of weed plants, nweed, was adjusted to match the159

desired weed pressure. Crop and weed plant positions were then placed in a160

list and sorted by their x–coordinates.161

2.4.2. Interpretation of results162

The tested method then generated a list of the plants recognized as crops163

and combined with the knowledge of the true crop plant positions a confusion164

matrix was built. To avoid boundary effects on the result, the simulated field165

were split into three parts: beginning, middle and end. The parts beginning166

and end of the simulated field were defined as the space required for 20167

adjacent crop plants. Only plants in the middle part contributed to the168

confusion matrix. The confusion matrix kept track of the number of true169

positives TP (crops classified as crops), false positives FP (weeds classified170

as crops), false negatives FN (crops classified as weeds) and true negatives171

TN (weeds classified as weeds). PPV was then calculated as172

PPV =
TP

TP + FP
(9)

2.5. Effect of upgrowth173

The main difference between the obtained theoretical predictions and174

the observed classifier performance described in Åstrand (2005) was that175

the upgrowth in the experiments were less than assumed in the derivations176

(100%). The article states upgrowth γ together with number of crops found177

(TP) and number of weeds misclassified as crops (FP). If the used algorithm178

cannot find a plant near a predicted grid location (within 3σ) no plants are179

classified as crop for that location. The probability of not finding a plant180

within 3σ are given by181

φ = (1− γ) · exp
(
−λ · 32

)
(10)

where 1− γ is the probability of not having a crop plant at the grid location182

and exp (−λ · 32) is the probability of not seeing any weeds within 3σ from183

the grid location.184
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If a crop plant is present at the investigated grid location, the expected185

PPV is given by 1
1+λ

. If no plants are within 3σ no action is taken and the186

observed PPV is not affected. The expected PPV value in a field with crop187

upgrowth γ is then188

ePPV =
1

1 + λ
· γ

1− φ (11)

where (1− φ) is the proportion of grid locations were at least a single plant189

is within 3σ from the location.190

3. Results and discussion191

With the test framework described in 2.4, the implemented classification192

methods were evaluated. Fields containing 360 crop plants were used. PPV193

values were calculated for weed densities (ρ) in the interval [0.03m−2; 180m−2]194

and crop positions uncertainties (σx, σy) in the interval [0.015m; 0.200m]. For195

each set of simulation variables the simulation was repeated 36 times.196

By plotting the obtained PPV as a function of the normalized weed pres-197

sure, it is seen that the normalized weed pressure is a suitable combination of198

the weed pressure and the crop position uncertainty as the simulation results199

(black dots in figure 4) lie in a thin band. The visualized simulation data in200

figure 4 was from the known grid locations method. It is also seen that the201

simulation results closely resemble the predicted upper bound on PPV given202

a certain normalized weed pressure.203

3.1. Influence of reduced upgrowth204

The effect of reduced upgrowth is visualized in figure 4, based on the205

assumption that plants with a distance larger than 3σ from the nearest ex-206

pected grid location are always classified as weed. At NWP above λ ' 0.1207

is the effect of reduced upgrowth a direct reduction in the achievable PPV208

value. At lower NWP values the dependency on upgrowth is reduced, as the209

probability of finding a weed within 3σ is low.210

3.2. Lower limits for crop positioning uncertainty211

Crop plant position uncertainty depends on several factors like seed bounc-212

ing, displacement and difference between seed and seedling location (Nørremark213
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Figure 3: Example of tree built by the path score method. The circles mark plant positions
(crops are green and weeds are red) and their radii are proportional to the assigned position
score. Solid lines indicates the neighbouring plant position that is contributing to the
current position score. The shown data is from a simulation with the parameters ρ =
50m−2, σx = 0.0240m and σy = 0.0136m. which gives the normalized weed pressure
λ = 0.1025. These conditions resembles DS1 from Åstrand (2005).
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Figure 4: Visualisation of the predicted PPV as a function of the normalized weed
pressure and the crop upgrowth, upgrowth percentages are indicated. The black dots are
simulation results of the Known Grid Locations method for recognizing crop plants, it
is seen to follow the prediction PPV. The two coloured dots are PPV from experiments
described in Åstrand (2005).
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et al., 2007). The position uncertainty will in general be larger in the di-214

rection of the crop row due to the seeding mechanism. Distances between215

seed and seedling location were quantified for light and heavy soil types by216

(Griepentrog et al., 2005). For light soils with fine seed beds the uncertainty217

was σseed-plant = 12.4mm (Nørremark et al., 2007).218

Consider the case with a high weed pressure of ρ = 400m−2 and crop219

position uncertainties of σx = σy = 30mm. What is the effect of using a220

better sowing machine to reduce the crop position uncertainty by a factor of221

two in both x and y directions? The normalized weed pressures and expected222

PPV values in these two cases are223

λ1 = 2π · 400m−2 · 0.03m · 0.03m = 2.26 PPV =
1

1 + λ1

= 0.31 (12)

λ2 = 2π · 400m−2 · 0.015m · 0.015m = 0.57 PPV =
1

1 + λ2

= 0.64 (13)

This increase in PPV value indicates that for context based methods the224

precise placement of crop plants is vital for good performance.225

3.3. Comparison with reported classification rates226

Åstrand (2005) provides information on weed pressure and crop plant227

position uncertainties for two datasets, these numbers are provided in table228

2. Given this information the upper bounds on PPV can be estimated using229

the relation derived in section 2.5. Table 3 contains information about clas-230

sifier PPV in the cited paper and predicted upper bound on PPV given the231

circumstances. The observed PPV is calculated as232

oPPV =
TP

TP + FP
(14)

The 95% credible interval (CI) in table 3 was calculated using the minimal233

length method described in Ross (2003). In dataset DS1 the classifier per-234

formed slightly better than the predicted upper bound, but not significantly235

higher. In DS2 the classifier did not perform as well as the predicted upper236

bound, but the difference was not significant. For both datasets the theoret-237

ical predictions are close to the observed classifier performance, which sup-238

port the theoretical predictions and indicate that the classifier implemented239

in Åstrand (2005) performed nearly optimal.240
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3.4. Performance of implemented methods241

To compare performance of the different classifiers, PPV values for dif-242

ferent circumstances are shown in figure 5. The position score classifier were243

used in four different configurations where the number of examined neighbour244

positions were 2, 5, 10 and 20 respectively. For each classifier configuration,245

the model246

PPV =
1

1 + f · λ (15)

was fitted to the simulation results. The parameter f is a measure of the247

ability of the classifier to locate the true crop locations compared to the248

expected performance of a classifier using true crop grid locations. A value249

of 3 means that the classifier performs as a classifier using true crop grid250

locations in a field with a three times higher NWP.251

The random classifier (f = 19.18) performs really bad, which is to be ex-252

pected as it does not utilize knowledge about the row structure. The classifier253

based on position scores were tested in four different configurations where the254

number of examined neighbour sites (N) was varied. Using two neighbour255

sites the performance is much better than the random classifier, but the gap256

up to the ideal classifier is large. When the number of neighbours is increased257

from 2 to 5, 10 and 20 the performance of the classifier is gradually increased.258

The f values is seen to have the approximate dependency on N :259

f = 1.94 +
6.55

N
(16)

The path score classifier is seen to perform similar to the position score when260

examining 20 neighbour positions.261

3.5. Is context information enough?262

Is it possible to rely on context based classification only? Assume that a263

PPV of 95% is so precise that farmers will find that the decrease in yield due264

to falsely removed crop plants will be outweighted by the decreased cost of265

manual weed control. To reach PPV = 0.95 the NWP should be 1
0.95
− 1 =266

0.0526 or lower. If the crop positioning uncertainty is σx = σy = 1cm the267

weed pressure must not exceed ∼ 84m−2. Higher weed pressures is often268

observed and therefore is context based classification not enough to reach269

the required classification accuracy.270
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Dataset ρ[m−2] σx[m] σy[m] λ γ
DS1 50 0.0240 0.0136 0.1025 0.71
DS2 400 0.0148 0.0108 0.4017 0.73

Table 2: Weed pressure, crop upgrowth and crop position uncertainties for two example
datasets and the derived normalized weed pressure. ρ: weed density, σ: crop position
uncertainty, λ: normalized weed pressure, γ: upgrowth rate.

Dataset # Loc. # TP # FP oPPV CI 1
1+λ
· γ

1−φ
DS1 643 424 148 0.741 [0.70; 0.78] 0.728
DS2 273 120 135 0.471 [0.41; 0.53] 0.525

Table 3: Predictions based on Åstrand (2005). # loc: number of crop locations, # TP:
number of correctly classified crop plants, oPPV: observed positive prediction rate, CI:
credible interval of the true PPV given the observations.
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Figure 5: Comparison of performance of different context based crop recognition methods.
The position score method is shown with results from four different number of neighbours.
Simulation results based on the same weed pressure (but different crop position uncertain-
ties) have identical colours. For each method the model 1

1+f ·λ is fitted and the f value is
indicated in the figure.
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3.6. Error types271

The observed errors can be divided into three groups. The first group272

contains all the cases where there is a weed plant closer to the expected crop273

location than the nearest crop. These errors cannot be avoided, but the error274

rate can be estimated from NWP. Errors caused by missing crop plants, e.g.275

due to low upgrowth rates, belongs to the second group. If the row structure276

recognizer fails to locate the row pattern, the search for the nearest plant277

is unlikely to find a crop and the resulting error belongs to the third group.278

The performance differences observed from figure 4 to 5 can be explained by279

group three errors.280

3.7. Assumptions and their validity281

To derive the central equations in this paper a set of assumptions were282

used. During the analysis it was assumed that the weed density was uniform.283

Research by (Nørremark, 2009) shows that the weed pressure is lower close284

to sugar beet seedlings. This effect is only present within a few centimetres285

from the crop plant seedling and the effect on the obtained results should be286

neglegible. If the weed pressure near the crop plants is lower, the PPV of the287

context based classifiers will increase slightly.288

Under real world conditions occlusion of leaf parts is often seen at high289

weed pressures. Occlusion of leafs can disturb estimation of the plant centres,290

but in the simulations it is assumed that the plant centres can be located291

under all conditions. The plant centre detection method determines how292

fragile the system will be to excessive occlusion. The method described in293

Midtiby et al. (2012) can predict plant centres of partial occluded plants.294

4. Conclusion295

When using position information to recognize crop plants, three types of296

errors can cause faulty classifications: (1) one or more weeds plants are closer297

to the expected crop location than the nearest crop, (2) no crop plant is at298

the expected crop location due to partial upgrowth or (3) the row structure is299

not located correctly and the classification algorithm will thus search at the300

wrong location for the next crop plant. The rate of the first error type can301

be estimated using the normalized weed pressure defined as λ = 2πσxσyρ.302

The third error type depends on the used method for estimating location of303

the next crop plant.304
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An upper bound on PPV for a given normalized weed pressure can be305

determined using the relation PPV = 1
1+λ

. Classifier performance of context306

based crop recognizers described in the literature was compared with the307

estimated upper bound. The observed performance were similar to or lower308

than the predicted upper bounds. The predicted relation between normalized309

weed pressure and achievable PPV was supported by both simulations and310

reported classifier performance in the literature. The direct relation between311

λ and PPV indicates that for context based methods the precise placement312

of crop plants is vital for good performance.313

Four different context based crop recognition methods was implemented314

and evaluated in a simulation environment. The methods based on posi-315

tion scores performed better when the number of examined neighbour crop316

positions were increased. When 20 neighbour positions were examined the317

method performed similarly to the path score method. All tested methods318

had PPV values below the theoretical upper bound. The performance of the319

two best methods could be predicted by the model PPV = 1
1+2·λ .320

If positive predictive values above 95% is needed, classification based on321

plant position information alone will not be enough for typical conditions322

and additional information like plant morphology, spectral characteristics or323

similar will be needed.324

Appendix A. Derivations325

Appendix A.1. Definitions326

pσc(c) =
1

σc
√

2π
exp

(−c2

2σ2
c

)
(A.1)

nw(x, y) = ρπσxσy

(
x2

σ2
x

+
y2

σ2
y

)
(A.2)
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Appendix A.2. The average number of weed plants closer to the grid location327

than the nearest crop plant328

λ =

∫ ∞

−∞

∫ ∞

−∞
pσx(x) · pσy(y) · nw(x, y) dx dy (A.3)

=

∫ ∞

−∞

∫ ∞

−∞

1

σx
√

2π
exp

(−x2

2σ2
x

)

· 1

σy
√

2π
exp

(−y2

2σ2
y

)
· ρπσxσy

(
x2

σ2
x

+
y2

σ2
y

)
dx dy (A.4)

Moving constants out of the double integral.

=
ρ

2

∫ ∞

−∞

∫ ∞

−∞
exp

(−x2

2σ2
x

)
· exp

(−y2

2σ2
y

)
·
(
x2

σ2
x

+
y2

σ2
y

)
dx dy (A.5)

Changing integration variable to get rid of σx and σy inside the double inte-
gral. [x′ = x/σx → dx = σxdx

′] and [y′ = y/σy → dy = σydy
′]

=
ρ

2

∫ ∞

−∞

∫ ∞

−∞
exp

(−x′2 − y′2
2

)
·
(
x′2 + y′2

)
σx dx

′ σy dy
′ (A.6)

Taking constants out of the integral and changing to polar coordinates.

=
ρσxσy

2

∫ 2π

0

∫ ∞

0

exp

(−r2

2

)
· r2 r dr dθ (A.7)

Solve the θ integral and thereafter the r integral.

= πρσxσy

∫ ∞

0

exp

(−r2

2

)
· r3 dr = 2πρσxσy (A.8)

Appendix A.3. Probability of not finding any weeds329

Positive predictive value, given crop position uncertainty σx,y and weed
density ρ.

PPV =

∫ ∞

−∞

∫ ∞

−∞
pσx(x) · pσy(y) · exp (−nw(x, y)) dx dy (A.9)

=

∫ ∞

−∞

∫ ∞

−∞

1

σx
√

2π
exp

(−x2

2σ2
x

)
· 1

σy
√

2π
exp

(−y2

2σ2
y

)

· exp

(
−ρπσxσy

[
x2

σ2
x

+
y2

σ2
y

])
dx dy (A.10)
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Separating the two integrals and collecting common factors.

=
1

2πσxσy

∫ ∞

−∞
exp

(
−x2 ·

[
1

2σ2
x

+ ρπσy/σx

])
dx

·
∫ ∞

−∞
exp

(
−y2 ·

[
1

2σ2
y

+ ρπσx/σy

])
dy (A.11)

Solve the integrals.

=
1

2πσxσy
·

√
π√

1
2σ2

x
+ ρπσy/σx

·
√
π√

1
2σ2

y
+ ρπσx/σy

(A.12)

Simplifications

=
1

2
· 1√

1
2

+ ρπσxσy

· 1√
1
2

+ ρπσxσy

=
1

1 + 2ρπσxσy
=

1

1 + λ
(A.13)
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