Introduction to classifiers

Henrik Skov Midtiby hemi@mmmi.sdu.dk

2014-11-05

The classification problem

Supervised classification

Instance: Feature vector $\vec{x} \in \mathbb{R}^{n}$ and class relation ship $y \in-1,1$.
Training: Given a set of feature vectors and corresponding class label.
Classification: Predict which class a new feature vector belongs to.

Nearest neighbor

Nearest neighbor

Approach

- Find nearest known sample
- Return class of that sample

Properties

- instance based learning
- distance metric

Nearest neighbor

Advantages

- easy training

Disadvantages

- slow classification
- large memory requirements
k Nearest neighbor

k Nearest Neighbor

- Generalization of Nearest Neighbor
- Find the k nearest neighbours
- Determine class by majority vote

Bayes rule

Bayes rule

The probability of A and B can be expressed in two ways

$$
P(A, B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)
$$

which is rearranged to Bayes rule

$$
P(B \mid A)=\frac{P(B) \cdot P(A \mid B)}{P(A)}
$$

often it is used as

$$
P(B \mid A)=\frac{P(B, A)}{P(B, A)+P(\neg B, A)}
$$

Naive Bayes

Approximates conditional probability densities
Uses Bayes rule to infer class membership probabilities based on observations and the conditional probability densities.

$$
p\left(C=1 \mid F_{1}, F_{2}, F_{3}\right)=\frac{p\left(C=1, F_{1}, F_{2}, F_{3}\right)}{p\left(C=1, F_{1}, F_{2}, F_{3}\right)+p\left(C=2, F_{1}, F_{2}, F_{3}\right)}
$$

Naive Bayes

Advantages

- fast classification
- low memory requirements
- probability of belonging to certain classes
- requires relative few training samples

Disadvantages

- assuming independent features

Bayes theorem

Joint probability

$$
\begin{aligned}
p\left(C, F_{1}, F_{2}, F_{3}\right) & =p\left(F_{1}, F_{2}, F_{3} \mid C\right) p(C) \\
& =p\left(F_{1}, F_{2} \mid F_{3}, C\right) P\left(F_{3} \mid C\right) p(C) \\
& =p\left(F_{1} \mid F_{2}, F_{3}, C\right) P\left(F_{2}, \mid F 3, C\right) P\left(F_{3} \mid C\right) p(C)
\end{aligned}
$$

Naive assumption

$$
\begin{aligned}
p\left(C, F_{1}, F_{2}, F_{3}\right) & \simeq p\left(F_{1} \mid C\right) P\left(F_{2}, \mid C\right) P\left(F_{3} \mid C\right) p(C) \\
& \simeq\left[\prod_{k=1}^{3} p\left(F_{k} \mid C\right)\right] \cdot p(C)
\end{aligned}
$$

http://en.wikipedia.org/wiki/Bayes\'_theorem

Conditional probabilities

Support vector machines

Advantages

- state of art classification results

Disadvantages

- binary classification

Perceptron

$$
f(\vec{x})=\vec{x} \cdot \vec{w}
$$

Perceptron

Invented in 1957 by Frank Rosenblatt Works on linearly separable problems
Decision rule

$$
f(\vec{x})= \begin{cases}1 & \text { if } \vec{w} \cdot \vec{x}+b>0 \\ -1 & \text { otherwise }\end{cases}
$$

Demonstration at https://www.khanacademy.org/cs/perceptron-classifier/ 993241235

Perceptron classifier

Perceptron classifier

Perceptron Algorithm

argument：$\quad X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$（data）

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $(w, b)=\operatorname{Perceptron}(X, Y, \eta)$
initialize $w, b=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data
if $y_{i}\left(w \cdot x_{i}+b\right) \leq 0$ then

$$
\begin{aligned}
& w^{\prime}=w+y_{i} x_{i} \\
& b^{\prime}=b+y_{i}
\end{aligned}
$$

until $y_{i}\left(w \cdot x_{i}+b\right)>0$ for all i
end

Perceptron example

Demonstration at
https://www.khanacademy.org/cs/perceptron-classifier/ 993241235

Perceptron training as a optimization problem

Minimize:
$f(\vec{w}, b)=0$
Subject to:
$1-y_{i}\left(\vec{w}^{T} \vec{x}_{i}+b\right) \leq 0$

Find a feasible solution.

Linearly non separable problems

Linearly non separable problems - Decision surface

http://www.youtube.com/watch?v=3liCbRZPrZA
http://www.youtube.com/watch?v=9NrALgHFwTo

Derived features

If the classification problem is not linearly separable...

Map the input feature space to an extended feature space.

An example

$$
\begin{aligned}
\phi\left(\left[x_{1}, x_{2}, x_{3}\right]\right) & =\left[x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right] \\
\phi\left(\left[z_{1}, z_{2}, z_{3}\right]\right) & =\left[z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{1} z_{2}, z_{1} z_{3}, z_{2} z_{3}\right]
\end{aligned}
$$

Derived features

Derived features

Perceptron Algorithm

argument：$\quad X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$（data）

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $(w, b)=\operatorname{Perceptron}(X, Y, \eta)$
initialize $w, b=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data
if $y_{i}\left(w \cdot x_{i}+b\right) \leq 0$ then

$$
\begin{aligned}
& w^{\prime}=w+y_{i} x_{i} \\
& b^{\prime}=b+y_{i}
\end{aligned}
$$

until $y_{i}\left(w \cdot x_{i}+b\right)>0$ for all i
end

Perceptron on Features

argument：$\quad X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$（data）

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $(w, b)=\operatorname{Perceptron}(X, Y, \eta)$
initialize $w, b=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data

$$
\text { if } \begin{gathered}
y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right) \leq 0 \text { then } \\
w^{\prime}=w+y_{i} \Phi\left(x_{i}\right) \\
b^{\prime}=b+y_{i}
\end{gathered}
$$

until $y_{i}\left(w \cdot \Phi\left(x_{i}\right)+b\right)>0$ for all i
end

Important detail

$w=\sum_{j} y_{j} \Phi\left(x_{j}\right)$ and hence $f(x)=\sum_{j} y_{j}\left(\Phi\left(x_{j}\right) \cdot \Phi(x)\right)+b$

Kernel Perceptron

argument: $\quad X:=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathcal{X}$ (data)

$$
Y:=\left\{y_{1}, \ldots, y_{m}\right\} \subset\{ \pm 1\} \text { (labels) }
$$

function $f=\operatorname{Perceptron}(X, Y, \eta)$
initialize $f=0$
repeat
Pick $\left(x_{i}, y_{i}\right)$ from data
if $y_{i} f\left(x_{i}\right) \leq 0$ then

$$
f(\cdot) \leftarrow f(\cdot)+y_{i} k\left(x_{i}, \cdot\right)+y_{i}
$$

until $y_{i} f\left(x_{i}\right)>0$ for all i
end

Important detail

$w=\sum_{j} y_{j} \Phi\left(x_{j}\right)$ and hence $f(x)=\sum_{j} y_{j} k\left(x_{j}, x\right)+b$.

The kernel trick

Use the derived features from earlier

$$
\begin{aligned}
& \phi\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{2} x_{3}\right] \\
& \phi\left(\left[z_{1}, z_{2}, z_{3}\right]\right)=\left[z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, \sqrt{2} z_{1} z_{2}, \sqrt{2} z_{1} z_{3}, \sqrt{2} z_{2} z_{3}\right]
\end{aligned}
$$

Now the dot product of $\phi(x)$ and $\phi(z)$ can be computed as follows:

$$
\begin{aligned}
& \phi\left(\left[x_{1}, x_{2}, x_{3}\right]\right) \cdot \phi\left(\left[z_{1}, z_{2}, z_{3}\right]\right) \\
& \quad=x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+x_{3}^{2} z_{3}^{2}+2 x_{1} x_{2} z_{1} z_{2}+2 x_{1} x_{3} z_{1} z_{3}+2 x_{2} x_{3} z_{2} z_{3} \\
& \left(\left[x_{1}, x_{2}, x_{3}\right] \cdot\left[z_{1}, z_{2}, z_{3}\right]\right)^{2} \\
& \quad=x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+x_{3}^{2} z_{3}^{2}+2 x_{1} x_{2} z_{1} z_{2}+2 x_{1} x_{3} z_{1} z_{3}+2 x_{2} x_{3} z_{2} z_{3}
\end{aligned}
$$

Two different methods of computing the same value, lets use the fastest one.

Kernel perceptron example

Demonstration at
https://www.khanacademy.org/cs/ perceptron-classifier-kernel-version/1116691580

SVM

SVM

The "best possible" perceptron (largest margin). Soft classifier (for handling errors).

http://en.wikipedia.org/wiki/Support_vector_machine

Perceptron training as a optimization problem

Minimize:

$$
\begin{equation*}
f(\vec{w}, b)=0 \tag{1}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
y_{i}\left(\vec{w}^{T} \vec{x}_{i}+b\right) \geq 1 \tag{2}
\end{equation*}
$$

Find a feasible solution.

SVM optimization problem

Minimize:

$$
\begin{equation*}
f(\vec{w}, b)=\frac{1}{2}\|\vec{w}\|^{2} \tag{3}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
y_{i}\left(\vec{w}^{T} \vec{x}_{i}+b\right) \geq 1 \tag{4}
\end{equation*}
$$

Find maximum margin separating hyperplane.

SVM optimization problem - non separable case

Minimize:

$$
\begin{equation*}
f(\vec{w}, b)=\frac{1}{2}\|\vec{w}\|^{2}+C \sum_{i} \varepsilon_{i} \tag{5}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
y_{i}\left(\vec{w}^{T} \vec{x}_{i}+b\right)-\varepsilon_{i} \geq 1 \tag{6}
\end{equation*}
$$

Find maximum margin separating hyperplane allowing a few misclassifications.

SVM optimization problem - kernelized

Minimize:

$$
\begin{equation*}
f(\vec{w}, b)=\frac{1}{2}\|\vec{w}\|^{2}+C \sum_{i} \varepsilon_{i} \tag{7}
\end{equation*}
$$

Subject to:

$$
\begin{equation*}
y_{i}\left(\sum_{j} w_{j} k\left(\vec{x}_{j}, \vec{x}_{i}\right)+b\right)-\varepsilon_{i} \geq 1 \tag{8}
\end{equation*}
$$

Find maximum margin separating hyperplane allowing a few misclassifications.

SV Classification Machine

Boosting

Combination of several simple classifiers, which are allowed to make certain error types

Advantages

- state of art classification results

Disadvantages

- binary classification

Used for face recognition in
Viola, P., \& Jones, M. J. (2004). Robust Real-Time Face Detection. International Journal of Computer Vision, 57(2), 137154. doi:10.1023/B:VISI.0000013087.49260.fb

Boosting

Boosting

Boosting

Boosting

Boosting

Boosting

Decision trees

Go golfing based on the parameters

- weather forecast
- wind
- humidity

Decision trees

http://www.saedsayad.com/decision_tree.htm

Random forests

Combination of a large quantity of decision trees Advantages

- state of art classification results

Disadvantages

- difficult to explain...
- ?

Cross validation

Method for using the entire dataset for training and testing.

Ressources

An Introduction to Machine Learning with Kernels, Alexander J. Smola, 2004

