Object recognition

Henrik Skov Midtiby hemi@mmmi.sdu.dk

2014-11-05

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Detection of round objects

http://www.mathworks.se/products/image/examples.html?file=/products/demos/s

・ロト ・ 雪 ト ・ ヨ ト

Bottle recognition

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Optical character recognition (OCR)

ABCDEFGHIJKLMNO PQRSTUVWXYZAØÜa bcdefghijklmnop qrstuvwxyz&l234 567890(\$£.1!?)

http://www.identifont.com/similar?25H

Plant recognition

Feature based object recognition

Input image

Feature based object recognition

・ロト・日本・日本・日本・日本・今日・

Example: Circle detection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Features:

- area
- perimeter

Example: Circle detection

Features:

area

perimeter

Combination

 $\frac{4\pi \cdot \text{area}}{\text{perimeter}^2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: Circle detection

Features:

- area
- perimeter

Combination

 $\frac{4\pi \cdot \text{area}}{\text{perimeter}^2}$

Maximum value for a circle

$$\frac{4\pi \cdot \pi r^2}{(2\pi r)^2} = \frac{4\pi \cdot \pi r^2}{4\pi^2 r^2} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Circle detection continued

0.90.900.58

Metrics closer to 1 indicate that the object is approximately round

http://www.mathworks.se/products/image/examples.html?file=/products/demos/s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameter types

Reconstructive Descriptive

Example: Height and width of bounding box

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Desired properties of features

Discriminative power (determined by the classification task)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Invariant to
 - Translation
 - Scale
 - Rotation

Case: Digit recognition

								9
	3	2	8			6		
6				1	9	7		
	6					4	2	8
2		9						
	7					9	6	1
4				5	3	1		
	1	3	6			8		
								7

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Convex hull

Convex hull

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Convex hull

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Max ferret, symmetry, ...

Raw moments

I(x, y) intensity of image at location x, y

$$M_{ij} = \sum_{x} \sum_{y} x^{i} \cdot y^{j} \cdot I(x, y)$$

Centroid coordinates in terms of raw moments

$$\bar{x} = \frac{M_{10}}{M_{00}} = \frac{\sum_{x} \sum_{y} x \cdot I(x, y)}{\sum_{x} \sum_{y} I(x, y)}$$
$$\bar{y} = \frac{M_{01}}{M_{00}} = \frac{\sum_{x} \sum_{y} y \cdot I(x, y)}{\sum_{x} \sum_{y} I(x, y)}$$

http://en.wikipedia.org/wiki/Invariant_Moments

Place object centroid in (0,0)

This makes central moments invariant to translation.

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} \cdot (y - \bar{y})^{q} \cdot I(x, y)$$

Central moments from raw moments

$$\mu_{20} = \sum_{x} \sum_{y} (x - \bar{x})^{2} \cdot (y - \bar{y})^{0} \cdot I(x, y)$$

$$= \sum_{x} \sum_{y} (x^{2} - 2x \cdot \bar{x} + \bar{x}^{2}) \cdot I(x, y)$$

$$= \sum_{x} \sum_{y} x^{2} \cdot I(x, y) - 2 \cdot \bar{x} \cdot \sum_{x} \sum_{y} x \cdot I(x, y)$$

$$+ \bar{x}^{2} \sum_{x} \sum_{y} I(x, y)$$

$$= M_{20} - 2 \cdot \bar{x} \cdot M_{10} + \bar{x}^{2} \cdot M_{00}$$

$$= M_{20} - 2 \cdot \frac{M_{10}}{M_{00}} \cdot M_{10} + \left(\frac{M_{10}}{M_{00}}\right)^{2} \cdot M_{00}$$

$$= M_{20} - \frac{M_{10}}{M_{00}} \cdot M_{10} = M_{20} - \bar{x} \cdot M_{10}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Object orientation

Covariance matrix

$$\begin{aligned} \mu'_{20} &= \mu_{20}/\mu_{00} = M_{20}/M_{00} - \bar{x}^2 \\ \mu'_{02} &= \mu_{02}/\mu_{00} = M_{02}/M_{00} - \bar{y}^2 \\ \mu'_{11} &= \mu_{11}/\mu_{00} = M_{11}/M_{00} - \bar{x}\bar{y} \\ \text{cov}[I(x,y)] &= \begin{bmatrix} \mu'_{20} & \mu'_{11} \\ \mu'_{11} & \mu'_{02} \end{bmatrix}. \end{aligned}$$

Orientation of largest eigenvalue (and of object)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\Theta = \frac{1}{2} \arctan\left(\frac{2\mu_{11}'}{\mu_{20}' - \mu_{02}'}\right)$$

Central moments from raw moments

$$\begin{split} \mu_{00} &= M_{00} \\ \mu_{01} &= 0 \\ \mu_{10} &= 0 \\ \mu_{11} &= M_{11} - \bar{x}M_{01} = M_{11} - \bar{y}M_{10} \\ \mu_{20} &= M_{20} - \bar{x}M_{10} \\ \mu_{02} &= M_{02} - \bar{y}M_{01} \\ \mu_{21} &= M_{21} - 2\bar{x}M_{11} - \bar{y}M_{20} + 2\bar{x}^2M_{01} \\ \mu_{12} &= M_{12} - 2\bar{y}M_{11} - \bar{x}M_{02} + 2\bar{y}^2M_{10} \\ \mu_{30} &= M_{30} - 3\bar{x}M_{20} + 2\bar{x}^2M_{10} \\ \mu_{03} &= M_{03} - 3\bar{y}M_{02} + 2\bar{y}^2M_{01} \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Sign of central moment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\verb+http://m.socrative.com/+ login with hsm$

Sign of central moment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

http://m.socrative.com/ + login with hsm

Scale invariant moments

$$\eta_{ij} = \frac{\mu_{ij}}{\mu_{00}^{\left(1 + \frac{i+j}{2}\right)}}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Rotation invariant moments - Hu moments

$$\begin{split} h_1 &= \eta_{20} + \eta_{02} \\ h_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ h_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ h_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ h_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] \\ &+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ h_6 &= (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ &+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ h_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] \\ &- (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \end{split}$$

Hu moments

Figure 8-9. Images of five simple characters; looking at their Hu moments yields some intuition concerning their behavior

Table 8-1. Values of the Hu moments for the five simple characters of Figure 8-9

	h,	h ₂	h3	h ₄	h,	h ₆	h,
A	2.837e—1	1.961e-3	1.484e-2	2.265e-4	-4.152e-7	1.003e-5	—7.941e—9
I	4.578e—1	1.820e-1	0.000	0.000	0.000	0.000	0.000
0	3.791e-1	2.623e-4	4.501e-7	5.858e—7	1.529e—13	7.775e—9	-2.591e-13
м	2.465e—1	4.775e-4	7.263e—5	2.617e—6	-3.607e-11	-5.718e-8	-7.218e-24
F	3.186e—1	2.914e-2	9.397e—3	8.221e-4	3.872e—8	2.019e-5	2.285e—6

Learning OpenCV, Bradski & Kaehler, 2008

Hu moments

FIGURE 7.5: The Byzantine symbol "petasti" in various scaled and rotated versions, from (a) to (f).

Moments	0°	Scaled	180°	15°	Mirror	90°
ϕ_1	93.13	91.76	93.13	94.28	93.13	93.13
ϕ_2	58.13	56.60	58.13	58.59	58.13	58.13
ϕ_3	26.70	25.06	26.70	27.00	26.70	26.70
ϕ_4	15.92	14.78	15.92	15.83	15.92	15.92
φ5	3.24	2.80	3.24	3.22	3.24	3.24
φ ₆	10.70	9.71	10.70	10.57	10.70	10.70
φ ₇	0.53	0.46	0.53	0.56	-0.53	0.53

Table 7.4: The invariant moments of Hu for the versions of the "petasti" symbol

Pattern Recognition, Theodoridis & Koutroumbas, 2006

Hu moments - Interpretation

- I_1 Angular momentum
- I7 Skew invariant, changes sign when object is mirrored

Features from sudoku digits

Some example data from digit recognition. Now with better features

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- area
- perimeter
- central moments
- Hu moments

Sudoku digits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Sudoku digits

Sudoku digits

Features from sudoku digits

Some example data from digit recognition. Now with better features

- area
- perimeter
- central moments
- Hu moments Is not enough alone (6 vs. 9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

feature based object recognition can be used for several tasks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- features are derived from objects
- choosing good features are important