Object recognition

Henrik Skov Midtiby hemi@mmmi.sdu.dk

2014-11-05

Detection of round objects

http://www.mathworks.se/products/image/examples.html?file=/products/demos/s

Bottle recognition

Optical character recognition (OCR)

ABCDEFGHIJKLMNO PQRSTUVWXYZAめÜa bcdefghijklmnop qrstuvwxyz\&le34

Plant recognition

Cornflower (BBCH12)
ノ \& to
\rightarrow of ot $\%$ o o
fo to tr of
o x \& of of of

* + 大

Nightshade (BBCH12)
o \& \& \& 0 ?
$0 ; i+i \quad i \quad i$

d ! a $:!$! ! : !

 ! ! ! d d ! !

Feature based object recognition

0
Matched objects

Preprocessed image

Object descriptors

Feature based object recognition

Input image

Preprocessing

Preprocessed image

Feature extraction

Matched objects
Object descriptors

Example: Circle detection

Features:

- area
- perimeter

Example: Circle detection

Features:

- area
- perimeter

Combination

$$
\frac{4 \pi \cdot \text { area }^{\text {perimeter }^{2}}}{}
$$

Example: Circle detection

Features:

- area
- perimeter

Combination

$$
\frac{4 \pi \cdot \text { area }^{\text {perimeter }}}{}{ }^{2}
$$

Maximum value for a circle

$$
\frac{4 \pi \cdot \pi r^{2}}{(2 \pi r)^{2}}=\frac{4 \pi \cdot \pi r^{2}}{4 \pi^{2} r^{2}}=1
$$

Example: Circle detection continued

Metrics closer to 1 indicate that the object is approximately round

http://www.mathworks.se/products/image/examples.html?file=/products/demos/s

Parameter types

Reconstructive
Descriptive

Example: Height and width of bounding box

Desired properties of features

- Discriminative power (determined by the classification task)
- Invariant to
- Translation
- Scale
- Rotation

Case: Digit recognition

| | 3 | 2 | 8 | | | 6 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | | | | 1 | 9 | 7 | | |
| | 6 | | | | | 4 | 2 | 8 |
| 2 | | 9 | | | | | | |
| | 7 | | | | | 9 | 6 | 1 |
| 4 | | | | 5 | 3 | 1 | | |
| | 1 | 3 | 6 | | | 8 | | |
| | | | | | | | | 7 |

Feature space

Feature example

Feature example

Convex hull

Feature example

Convex hull

Feature example

Convex hull

Max ferret, symmetry, ...

Raw moments

$I(x, y)$ intensity of image at location x, y

$$
M_{i j}=\sum_{x} \sum_{y} x^{i} \cdot y^{j} \cdot I(x, y)
$$

Centroid coordinates in terms of raw moments

$$
\begin{aligned}
& \bar{x}=\frac{M_{10}}{M_{00}}=\frac{\sum_{x} \sum_{y} x \cdot I(x, y)}{\sum_{x} \sum_{y} I(x, y)} \\
& \bar{y}=\frac{M_{01}}{M_{00}}=\frac{\sum_{x} \sum_{y} y \cdot I(x, y)}{\sum_{x} \sum_{y} I(x, y)}
\end{aligned}
$$

Central moments

Place object centroid in $(0,0)$
This makes central moments invariant to translation.

$$
\mu_{p q}=\sum_{x} \sum_{y}(x-\bar{x})^{p} \cdot(y-\bar{y})^{q} \cdot I(x, y)
$$

Central moments from raw moments

$$
\begin{aligned}
\mu_{20}= & \sum_{x} \sum_{y}(x-\bar{x})^{2} \cdot(y-\bar{y})^{0} \cdot I(x, y) \\
= & \sum_{x} \sum_{y}\left(x^{2}-2 x \cdot \bar{x}+\bar{x}^{2}\right) \cdot I(x, y) \\
= & \sum_{x} \sum_{y} x^{2} \cdot I(x, y)-2 \cdot \bar{x} \cdot \sum_{x} \sum_{y} x \cdot I(x, y) \\
& \quad+\bar{x}^{2} \sum_{x} \sum_{y} I(x, y) \\
= & M_{20}-2 \cdot \bar{x} \cdot M_{10}+\bar{x}^{2} \cdot M_{00} \\
= & M_{20}-2 \cdot \frac{M_{10}}{M_{00}} \cdot M_{10}+\left(\frac{M_{10}}{M_{00}}\right)^{2} \cdot M_{00} \\
= & M_{20}-\frac{M_{10}}{M_{00}} \cdot M_{10}=M_{20}-\bar{x} \cdot M_{10}
\end{aligned}
$$

Object orientation

Covariance matrix

$$
\begin{aligned}
\mu_{20}^{\prime} & =\mu_{20} / \mu_{00}=M_{20} / M_{00}-\bar{x}^{2} \\
\mu_{02}^{\prime} & =\mu_{02} / \mu_{00}=M_{02} / M_{00}-\bar{y}^{2} \\
\mu_{11}^{\prime} & =\mu_{11} / \mu_{00}=M_{11} / M_{00}-\bar{x} \bar{y} \\
\operatorname{cov}[I(x, y)] & =\left[\begin{array}{ll}
\mu_{20}^{\prime} & \mu_{11}^{\prime} \\
\mu_{11}^{\prime} & \mu_{02}^{\prime}
\end{array}\right] .
\end{aligned}
$$

Orientation of largest eigenvalue (and of object)

$$
\Theta=\frac{1}{2} \arctan \left(\frac{2 \mu_{11}^{\prime}}{\mu_{20}^{\prime}-\mu_{02}^{\prime}}\right)
$$

Central moments from raw moments

$$
\begin{aligned}
& \mu_{00}=M_{00} \\
& \mu_{01}=0 \\
& \mu_{10}=0 \\
& \mu_{11}=M_{11}-\bar{x} M_{01}=M_{11}-\bar{y} M_{10} \\
& \mu_{20}=M_{20}-\bar{x} M_{10} \\
& \mu_{02}=M_{02}-\bar{y} M_{01} \\
& \mu_{21}=M_{21}-2 \bar{x} M_{11}-\bar{y} M_{20}+2 \bar{x}^{2} M_{01} \\
& \mu_{12}=M_{12}-2 \bar{y} M_{11}-\bar{x} M_{02}+2 \bar{y}^{2} M_{10} \\
& \mu_{30}=M_{30}-3 \bar{x} M_{20}+2 \bar{x}^{2} M_{10} \\
& \mu_{03}=M_{03}-3 \bar{y} M_{02}+2 \bar{y}^{2} M_{01}
\end{aligned}
$$

Sign of central moment

http://m.socrative.com/ + login with hsm

Sign of central moment

http://m.socrative.com/ + login with hsm

Scale invariant moments

$$
\eta_{i j}=\frac{\mu_{i j}}{\mu_{00}^{\left(1+\frac{i+j}{2}\right)}}
$$

Rotation invariant moments - Hu moments

$$
\begin{aligned}
I_{1}= & \eta_{20}+\eta_{02} \\
I_{2}= & \left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
I_{3}= & \left(\eta_{30}-3 \eta_{12}\right)^{2}+\left(3 \eta_{21}-\eta_{03}\right)^{2} \\
I_{4}= & \left(\eta_{30}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2} \\
I_{5}= & \left(\eta_{30}-3 \eta_{12}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +\left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
I_{6}= & \left(\eta_{20}-\eta_{02}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +4 \eta_{11}\left(\eta_{30}+\eta_{12}\right)\left(\eta_{21}+\eta_{03}\right) \\
I_{7}= & \left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& -\left(\eta_{30}-3 \eta_{12}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right]
\end{aligned}
$$

Hu moments

Allome

Figure 8-9. Images of five simple characters; looking at their Hu moments yields some intuition concerning their behavior

Table 8-1. Values of the Hu moments for the five simple characters of Figure 8-9

	$\mathbf{h}_{\mathbf{1}}$	$\mathbf{h}_{\mathbf{2}}$	\mathbf{h}_{3}	$\mathbf{h}_{\mathbf{4}}$	\mathbf{h}_{5}	$\mathbf{h}_{\mathbf{6}}$	$\mathbf{h}_{\mathbf{7}}$
A	$2.837 \mathrm{e}-1$	$1.961 \mathrm{e}-3$	$1.484 \mathrm{e}-2$	$2.265 \mathrm{e}-4$	$-4.152 \mathrm{e}-7$	$1.003 \mathrm{e}-5$	$-7.941 \mathrm{e}-9$
I	$4.578 \mathrm{e}-1$	$1.820 \mathrm{e}-1$	0.000	0.000	0.000	0.000	0.000
0	$3.791 \mathrm{e}-1$	$2.623 \mathrm{e}-4$	$4.501 \mathrm{e}-7$	$5.858 \mathrm{e}-7$	$1.529 \mathrm{e}-13$	$7.775 \mathrm{e}-9$	$-2.591 \mathrm{e}-13$
M	$2.465 \mathrm{e}-1$	$4.775 \mathrm{e}-4$	$7.263 \mathrm{e}-5$	$2.617 \mathrm{e}-6$	$-3.607 \mathrm{e}-11$	$-5.718 \mathrm{e}-8$	$-7.218 \mathrm{e}-24$
F	$3.186 \mathrm{e}-1$	$2.914 \mathrm{e}-2$	$9.397 \mathrm{e}-3$	$8.221 \mathrm{e}-4$	$3.872 \mathrm{e}-8$	$2.019 \mathrm{e}-5$	$2.285 \mathrm{e}-6$

Learning OpenCV, Bradski \& Kaehler, 2008

Hu moments

FIGURE 7.5: The Byzantine symbol "petasti" in various scaled and rotated versions, from (a) to (f).

Table 7.4: The invariant moments of Hu for the versions of the "petasti" symbol

Moments	0°	Scaled	180°	15°	Mirror	90°
ϕ_{1}	93.13	91.76	93.13	94.28	93.13	93.13
ϕ_{2}	58.13	56.60	58.13	58.59	58.13	58.13
ϕ_{3}	26.70	25.06	26.70	27.00	26.70	26.70
ϕ_{4}	15.92	14.78	15.92	15.83	15.92	15.92
ϕ_{5}	3.24	2.80	3.24	3.22	3.24	3.24
ϕ_{6}	10.70	9.71	10.70	10.57	10.70	10.70
ϕ_{7}	0.53	0.46	0.53	0.56	-0.53	0.53

Pattern Recognition, Theodoridis \& Koutroumbas, 2006

Hu moments - Interpretation

I_{1} Angular momentum
I_{7} Skew invariant, changes sign when object is mirrored

Features from sudoku digits

Some example data from digit recognition. Now with better features

- area
- perimeter
- central moments
- Hu moments

Sudoku digits

Sudoku digits

class
$-\quad 1$
$-\quad 2$
$-\quad 3$
$-\quad 4$
$-\quad 5$
$-\quad 6$
-7
-8
-9

Sudoku digits

Features from sudoku digits

Some example data from digit recognition.
Now with better features

- area
- perimeter
- central moments
- Hu moments - Is not enough alone (6 vs. 9)

Summary

- feature based object recognition can be used for several tasks
- features are derived from objects
- choosing good features are important

